

Series: GHF2E SET~3

प्रश्न-पत्र कोड Q.P. Code 31/2/3

रोल नं.				
Roll No.				

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Q.P. Code on the title page of the answer-book.

	_	!	
	नोट 	<u> </u>	NOTE
(I)	कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 27 हैं।	(I)	Please check that this question paper contains 27 printed pages.
(II)	प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।	(II)	Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
(III)	कृपया जाँच कर लें कि इस प्रश्न-पत्र में 39 प्रश्न हैं।	(III)	Please check that this question paper contains 39 questions.
(IV)	कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में यथा स्थान पर प्रश्न का क्रमांक अवश्य लिखें।	(IV)	Please write down the Serial Number of the question in the answer-book at the given place before attempting it.
(V)	इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक परीक्षार्थी केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।	(V)	15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the candidates will read the question paper only and will not write any answer on the answer-book during this period.

विज्ञान SCIENCE

निर्धारित समय : 3 घण्टे

Time allowed: 3 hours

अधिकतम अंक : 80

Maximum Marks: 80

31/2/3

1

[P.T.O.]

सामान्य निर्देश :

निम्नलिखित निर्देशों को बहत सावधानी से पढ़िए और उनका सख़्ती से पालन कीजिए :

- इस प्रश्न-पत्र में कुल 39 प्रश्न हैं। सभी प्रश्न अनिवार्य हैं। *(i)*
- यह प्रश्न-पत्र **पाँच** खण्डों में विभाजित किया गया है **क. ख. ग. घ** एवं **ङ**। (ii)
- खण्ड क प्रश्न संख्या 1 से 20 तक बहुविकल्पीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 1 अंक का है। (iii)
- खण्ड ख प्रश्न संख्या 21 से 26 तक अति लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 2 अंकों का (iv) है। इन प्रश्नों के उत्तर 30 से 50 शब्दों में दिए जाने चाहिए।
- खण्ड ग प्रश्न संख्या 27 से 33 तक लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 3 अंकों का है। इन (v) प्रश्नों के उत्तर 50 से 80 शब्दों में दिए जाने चाहिए।
- खण्ड घ प्रश्न संख्या 34 से 36 तक दीर्घ-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 5 अंकों का है। (vi) इन प्रश्नों के उत्तर 80 से 120 शब्दों में दिए जाने चाहिए।
- खण्ड ङ प्रश्न संख्या 37 से 39 तक 3 स्रोत-आधारित/प्रकरण-आधारित इकाइयों के मूल्यांकन के (vii) 4 अंकों के प्रश्न (उप-प्रश्नों सहित) हैं।
- प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, कुछ खण्डों में आंतरिक विकल्प दिए गए हैं। इस प्रकार (viii) के प्रश्नों में केवल एक ही विकल्प का उत्तर दीजिए।

खण्ड क

प्रश्न संख्या 1 से 20 तक बहुविकल्पीय प्रश्न हैं। इनमें से केवल एक विकल्प ही सही है। प्रत्येक प्रश्न में दिए गए चार विकल्पों में से सबसे उचित विकल्प चुनिए और लिखिए। $20 \times 1 = 20$

- जल के विद्युत अपघटन में इलेक्ट्रोडों पर मुक्त हाइड्रोजन और ऑक्सीजन गैसों के द्रव्यमानों का अनुपात 1. होता है:
 - (A) 1:2
 - (B) 1:4
 - (C) 1:8
 - (D) 1:16

General Instructions:

Read the following instructions very carefully and strictly follow them:

- (i) This question paper comprises **39** questions. **All** questions are **compulsory**.
- (ii) This question paper is divided into **five** sections **A**, **B**, **C**, **D** and **E**.
- (iii) Section A Questions No. 1 to 20 are Multiple Choice Questions. Each question carries 1 mark.
- (iv) Section B Questions No. 21 to 26 are Very Short Answer type questions. Each question carries 2 marks. Answer to these questions should be in the range of 30 to 50 words.
- (v) **Section C** Questions No. **27** to **33** are Short Answer type questions. Each question carries **3** marks. Answer to these questions should in the range of **50** to **80** words.
- (vi) **Section D** Questions No. **34** to **36** are Long Answer type questions. Each question carries **5** marks. Answer to these questions should be in the range of **80** to **120** words.
- (vii) **Section E** Questions No. **37** to **39** are of **3** source-based/case-based units of assessment carrying **4** marks each with sub-parts.
- (viii) There is no overall choice. However, an internal choice has been provided in some sections. Only one of the alternatives has to be attempted in such questions.

SECTION A

Questions No. 1 to 20 are Multiple Choice Questions. Only one of the choices is correct. Select and write the most appropriate option out of the four options given for each. $20 \times 1 = 20$

- 1. In the electrolysis of water, the mass ratio of hydrogen and oxygen gases liberated at the electrodes is:
 - (A) 1:2
 - (B) 1:4
 - (C) 1:8
 - (D) 1:16

31/2/3 [P.T.O.]

- मानव शरीर के कार्य करने के pH का परास (परिसर) है: 2.
 - 6.1 से 6.8 (A)

6.5 से 7.3 (B)

7.0 से 7.8 (C)

- 7.5 से 8.1 (D)
- निम्नलिखित में से किसके हाइड्रॉक्साइड से भरे बर्तनों (पात्रों) पर दिए गए आरेख में दर्शाया गया 3. चेतावनी चिह्न आवश्यक रूप से लगाया जाना चाहिए?

ऐल्मिनियम (A)

कैल्सियम (B)

सोडियम (C)

- मैग्नीशियम (D)
- दो भिन्न मिश्रातुओं को प्राप्त करने के लिए गलित कॉपर (प्राथमिक धातु) में निश्चित अनुपात में ज़िंक 4. और टिन को पृथक-पृथक विलीन किया गया है। इनसे क्रमश: जो दो भिन्न मिश्रातु बनते हैं, उन्हें कहते हैं :
 - ब्रान्ज और पीतल (A)

पीतल और सोल्डर (B)

पीतल और ब्रान्ज (C)

- सोल्डर और ब्रान्ज (D)
- थर्मिट वेल्डिंग में ऐलुमिनियम चूर्ण का उपयोग किया जाता है क्योंकि : **5.**
 - ऐलुमिनियम की आयरन के साथ अभिक्रिया अत्यधिक ऊष्माक्षेपी है। (A)
 - ऐलुमिनियम को जब आयरन (III) ऑक्साइड के साथ गर्म किया जाता है, तो गलित आयरन (B) प्राप्त होता है।
 - ऐलुमिनियम को जब आयरन (III) ऑक्साइड के साथ गर्म किया जाता है, तो गलित (C) ऐलुमिनियम ऑक्साइड प्राप्त होता है जो रेल की पटरियों को जोड़ता है।
 - ऐलुमिनियम का गलनांक आयरन के गलनांक से कम है तथा गर्म करने पर ऐलुमिनियम और (D) आयरन का गलित मिश्रातु बनता है जो रेल की पटरियों को जोड़ता है।

2.	The body	of human	heings	works	within	the nH	range (of ·
∠ •	The body	oi muman	DCIIISS	WOIKS	** 1 (111111	mic bri	lange	<i>)</i> 1.

(A) 6.1 to 6.8

(B) 6.5 to 7.3

(C) 7.0 to 7.8

(D) 7.5 to 8.1

3. The warning sign shown in the given figure must invariably be displayed/pasted on the containers which contain hydroxide of:

(A) Aluminium

(B) Calcium

(C) Sodium

(D) Magnesium

4. Two metals zinc and tin are dissolved separately in definite proportions in molten copper (the primary metal) to obtain two different alloys respectively known as:

(A) Bronze and Brass

(B) Brass and Solder

(C) Brass and Bronze

(D) Solder and Bronze

- **5.** Aluminium powder is used in thermit welding because :
 - (A) Its reaction with iron is highly exothermic.
 - (B) When it is heated with iron (III) oxide, molten iron is obtained.
 - (C) When it is heated with iron (III) oxide, molten aluminium oxide is obtained to join railway tracks.
 - (D) Its melting point is low as compared to iron and a molten alloy of iron and aluminium is formed on heating which is used to join railway tracks.

31/2/3

5

[P.T.O.]

- 6. मानव हृदय के प्रकार्य के बारे में निम्नलिखित कथनों में से सही विकल्प चुनिए :
 - (A) दायाँ अलिन्द शरीर के विभिन्न भागों से विऑक्सीजनित रुधिर ग्रहण करके उसे फुफ्फुसीय शिराओं में भेजता है।
 - (B) बायाँ अलिन्द ऑक्सीजनित रुधिर को दाएँ निलय को भेजता है जो उसे शरीर के विभिन्न भागों को पम्प कर देता है।
 - (C) दायाँ अलिन्द शरीर से विऑक्सीजनित रुधिर ग्रहण करके उसे दाएँ निलय को भेज देता है।
 - (D) बायाँ अलिन्द फुफ्फुसीय धमनियों से ऑक्सीजनित रुधिर ग्रहण करके उसे बाएँ निलय को भेज देता है।
- 7. दिए गए आरेख A और B का प्रेक्षण कीजिए। जब किसी छुई-मुई (सुग्राही) पौधे को स्पर्श किया जाता है, तो उसकी पत्तियाँ मुड़ जाती हैं। इसका कारण है:

आरेख B

आरेख A

- (A) हॉर्मोनल प्रभाव
- (B) तापीय (ऊष्मीय) प्रभाव
- (C) कोशिकाओं में जल की मात्रा में परिवर्तन
- (D) विद्युत-चुंबकीय प्रभाव
- **8.** एक कोशिकीय मोटी रुधिर वाहिकाओं को क्या कहते हैं ?
 - (A) कृपिकाएँ

(B) केशिकाएँ

(C) धमनियाँ

(D) शिराएँ

31/2/3

6

#

- **6.** Select the correct option from the following statements about the functioning of the human heart.
 - (A) Right atrium receives deoxygenated blood from different parts of the body and sends it to pulmonary veins.
 - (B) Left atrium sends oxygenated blood to right ventricle which pumps it to different parts of the body.
 - (C) Right atrium receives deoxygenated blood from the body and sends it to the right ventricle.
 - (D) Left atrium receives oxygenated blood from the pulmonary arteries and sends it to the left ventricle.
- **7.** Observe the given figures A and B. When *chhui-mui* (sensitive) plant is touched, its leaves fold. This is due to:

Figure A

Figure B

- (A) Hormonal effect
- (B) Thermal effect
- (C) Change in amount of water in cells
- (D) Electromagnetic effect
- **8.** One-cell thick blood vessels are known as:
 - (A) Alveoli

(B) Capillaries

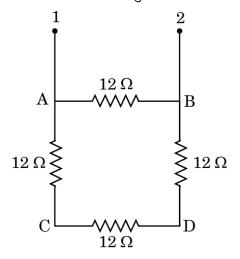
(C) Arteries

(D) Veins

31/2/3

7

[P.T.O.]


- किसी पुष्पी पादप के मादा जनन तंत्र में दिए गए भागों का व्यवस्था के अनुसार निम्नलिखित में से 9. कौन-सा सही अनुक्रम है ?
 - वर्तिकाग्र, बीजाण्ड, अंडाशय, वर्तिका (A)
 - बीजाण्ड, वर्तिकाग्र, अंडाशय, वर्तिका (B)
 - वर्तिका, वर्तिकाग्र, बीजाण्ड, अंडाशय (C)
 - वर्तिकाग्र, वर्तिका, अंडाशय, बीजाण्ड (D)
- किसी कोशिका विभाजन में गुणसूत्रों की संख्या आधी हो गई है। इस प्रकार के कोशिका विभाजन का 10. प्रेक्षण कहाँ किया जाता है ?
 - केवल वषणों में (A)

- केवल अंडाशय में (B)
- अंडाशय और वृषण दोनों में (C)
- शरीर की सभी कोशिकाओं में (D)
- कोई विद्युत बल्ब 220 V की विद्युत आपूर्ति से संयोजित है। यदि यह बल्ब आपूर्ति से 500 mA 11. धारा लेता है, तो इस बल्ब की शक्ति है:
 - (A) 11 W

(B) 110 W

(C) 220 W

- 1100 W (D)
- $12~\Omega$ के चार सर्वसम प्रतिरोधक आरेख में दर्शाए अनुसार श्रेणीक्रम में संयोजित होकर वर्ग ABCD**12.** बनाते हैं। इस नेटवर्क के दो बिन्दुओं 1 और 2 के बीच प्रतिरोध है :

(A) 48Ω (B) 36Ω

(C) 9Ω (D) 6Ω

- **9.** Which of the following is the correct sequence of parts of female reproductive system of flowering plants in terms of their placement?
 - (A) Stigma, ovule, ovary, style
 - (B) Ovule, stigma, ovary, style
 - (C) Style, stigma, ovule, ovary
 - (D) Stigma, style, ovary, ovule
- **10.** The number of chromosomes in a cell division is halved. This kind of cell division is observed in :
 - (A) Only testis

- (B) Only ovary
- (C) Ovary and testis both
- (D) All cells of the body
- 11. An electric bulb is connected to a power supply of 220 V. If the current drawn by the bulb from the supply is 500 mA, the power of the bulb is:
 - (A) 11 W

(B) 110 W

(C) 220 W

- (D) 1100 W
- 12. Four identical resistors of 12Ω each are connected in series to form a square ABCD as shown in the figure. The resistance of the network between the two points 1 and 2 is:

(A) 48Ω

(B) 36Ω

(C) 9Ω

(D) 6Ω

31/2/3

9

[P.T.O.]

13.	मानव ने सकता है	त्र का वह भाग कौन-सा है जो अभिनेत्र लेंस की वक्रता में कुछ सीमा तक रूपान्तरण कर
	(A)	पुतली
	(B)	स्वच्छमंडल

नेत्रोद (D)

(C)

पक्ष्माभी पेशियाँ

यदि दो माध्यमों X और Y के निरपेक्ष अपवर्तनांक क्रमश: $\frac{6}{5}$ और $\frac{4}{3}$ हैं, तो X के सापेक्ष Y का 14. अपवर्तनांक होगा :

$$(A) \qquad \frac{10}{9}$$

(B) $\frac{9}{10}$

(C)
$$\frac{9}{8}$$

(D) $\frac{8}{9}$

कोई बिम्ब किसी अवतल दर्पण के ध्रुव से 30 cm दूरी पर स्थित है। यदि इस बिम्ब का वास्तविक **15.** और उल्टा प्रतिबिम्ब इस दर्पण के सामने 60 cm दूरी पर बनता है, तो दर्पण की फोकस दूरी है :

(A) $-15 \mathrm{cm}$ (B) $-20 \mathrm{cm}$

(C) + 20 cm

(D) + 15 cm

निम्नलिखित में से सभी अजैव-निम्नीकरणीय पदार्थों के समूह को पहचानिए। 16.

> चमड़ा, काँच, प्लास्टिक (A)

(B) कपास, लकड़ी, नाइलॉन

DDT, पॉलिएस्टर, काँच (C)

चमड़ा, रेशम, ऊन (D)

प्रश्न संख्या 17 से 20 के लिए, दो कथन दिए गए हैं – जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है। इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (A), (B), (C)और (D) में से चुनकर दीजिए।

अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही (A) व्याख्या करता है।

अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की (B) सही व्याख्या *नहीं* करता है।

अभिकथन (A) सही है, परन्तु कारण (R) ग़लत है। (C)

अभिकथन (A) ग़लत है, परन्तु कारण (R) सही है। (D)

13.	The	part of the human eye which can modify the curvature of the eye lens
	to so	me extent is:
	(A)	Pupil
	(B)	Cornea
	(C)	Ciliary muscles
	(D)	Aqueous humour

- If the absolute refractive indices of two media X and Y are $\frac{6}{5}$ and $\frac{4}{3}$ 14. respectively, then the refractive index of Y with respect to X will be:
 - (B) $\frac{9}{10}$ (D) $\frac{8}{9}$ (A)

(C)

- **15.** An object is placed at a distance of 30 cm from the pole of a concave mirror. If its real and inverted image is formed at 60 cm in front of the mirror, the focal length of the mirror is:
 - (A) $-15 \mathrm{cm}$ $-20 \mathrm{cm}$ (B) (C) +20 cm(D) +15 cm
- 16. Identify from the following a group containing all non-biodegradable substances.
 - (A) Leather, Glass, Plastic (B) Cotton, Wood, Nylon
 - (C) DDT, Polyester, Glass (D) Leather, Silk, Wool

For Questions number 17 to 20, two statements are given — one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below.

- Both Assertion (A) and Reason (R) are true and Reason (R) is the (A) correct explanation of Assertion (A).
- (B) Both Assertion (A) and Reason (R) are true, but Reason (R) is **not** the correct explanation of Assertion (A).
- (C) Assertion (A) is true, but Reason (R) is false.
- (D) Assertion (A) is false, but Reason (R) is true.

31/2/3 [P.T.O.]

- 17. अभिकथन (A): तन्यता धातुओं का वह गुण है जिसके कारण कॉपर का उपयोग खाना/भोजन पकाने के बर्तन बनाने में किया जा सकता है।
 - कारण (R): कॉपर ऐसी धातु है जो तन्य के साथ-साथ आघातवर्ध्य भी है।
- 18. अभिकथन (A): आम का बीज अंकुरित होकर आम का वृक्ष बनेगा।
 - कारण (R): आनुवंशिकता उस प्रक्रिया का निर्धारण करती है जिसके द्वारा जनकों से संतित को लक्षण और विशिष्टताएँ (गुण) विश्वस्तता के साथ वंशानुगत होते/होती हैं।
- 19. अभिकथन (A): किसी तार को कई फेरों की कुण्डली में मोड़ने से उसके वैद्युत प्रतिरोध पर प्रभाव नहीं पडता है।
 - कारण (R): किसी तार का विद्युत प्रतिरोध उस तार की वैद्युत प्रतिरोधकता के अनुक्रमानुपाती होता है।
- 20. अभिकथन (A): यदि जन्तु भोजन के रूप में कोयला खाते (उपभुक्त करते) हैं, तो उन्हें ऊर्जा प्राप्त नहीं होगी।
 - कारण (R): किसी विशेष प्रकार के भोजन के अपघटन/पाचन के लिए विशिष्ट एंज़ाइमों की आवश्यकता होती है।

खण्ड ख

प्रश्न संख्या 21 से 26 अति लघु-उत्तरीय प्रकार के प्रश्न हैं।

- 21. (क) सामान्य व्यवहार में सिल्वर नाइट्रेट विलयन से सिल्वर की प्रतिप्राप्ति (वसूली) कॉपर धातु का उपयोग करके की जाती है। इस प्रक्रिया में होने वाली अभिक्रिया के प्रकार का नाम लिखिए तथा सम्मिलित अभिक्रिया का रासायनिक समीकरण लिखिए।
 - (ख) सिल्वर के परिष्करण के लिए प्रयोग की जाने वाली विधि का नाम लिखिए।
- 22. मिसेल किसे कहते हैं ? इसकी संरचना खींचिए।
- 23. कोई व्यक्ति निकट के बाज़ार से कुछ वस्तुएँ खरीदने के लिए सूची बना रहा है। इस कार्यकलाप को करने में अग्रमस्तिष्क किस प्रकार महत्त्वपूर्ण भूमिका निभाता है, व्याख्या कीजिए। 2

31/2/3

12

#

2

- 17. Assertion (A): Ductility is that property of metals which enables copper to be used in making cooking utensils.
 - Reason(R): Copper is a metal which is ductile as well as malleable.
- 18. Assertion (A): A mange seed will germinate to form a mange tree.
 - Reason(R): Heredity determines the process by which traits and characteristics are reliably inherited from parents to offspring.
- 19. Assertion (A): The bending of a wire in the form of a coil of several turns does not affect its electrical resistance.
 - Reason(R): The electrical resistance of a wire is directly proportional to its electrical resistivity.
- 20. Assertion (A): Animals will not get energy if they eat (consume) coal as food.
 - Reason(R): Specific enzymes are needed for the breakdown of a particular food.

SECTION B

Questions no. 21 to 26 are Very Short Answer Type questions.

- In common practice silver is recovered from silver nitrate solution 21. (a) by the use of copper metal. Name the type of reaction that takes place in this process and give the chemical equation of the reaction involved.
 - (b) Name the method used for refining silver.
- What are micelles? Draw the structure. 22. 2
- **23.** A person is making a list to purchase few things from a nearby market. Explain how the fore-brain plays an important role in performing this activity.

31/2/3 [P.T.O.]

CLICK HERE

2

24.	(ক)	बीज मे	मं, निम्नलिखित प्रत्ये	क भाग का एक-ए	क का	र्य लिखिए :			2
		(i)	बीजावरण	(j	ii)	बीजपत्र			
		(iii)	मूलांकुर	(i	iv)	प्रांकुर			
			अथवा						
	(ख)	प्रयोगः	शाला में यीस्ट संवर्ध	न के मुख्य चरणों	को लि	ाखिए।			2
25.	(क)	पर अ	प्तों में एक अवतल त ापतित समान्तर प्रक केरण आरेख खींचि	ाश पुन्ज को अपस					2
			अथवा						
	(ख)		प्रकाश किरण किसी होती है।	उत्तल लेंस से अ	पवर्तन	ा के पश्चात [्]	इसके मुख्य अक्ष	ा के समान्तर	2
		(i)	इसे दर्शाने के लि	ए नामांकित किरण	आरेर	व खींचिए।			
		(ii)		गपितत किरण लेंस् है। इस बिन्दु का न	_ `	' _	⁻ लेंस के मुख्य 3	नक्ष के किसी	
26.		•	रिपथ में विद्युत फ्यूज़ कीजिए।	न का उपयोग क्यों	और र्	केस प्रकार वि	न्या जाता है ? इ र	प्तके कार्य का	2
				ਕੁਹਤ ਸ	Т				
प्रश्न सं	<u>ख्या</u> 27	से 33	लघु-उत्तरीय प्रकार व	न प्रश्न हैं।					
27.	(ক)	(i)	वियोजन (अपघट अभिक्रिया के लिए ऊष्मा, प्रकाश और	्रएक-एक रासार्या	नेक स	मीकरण लि			
		(ii)	वनस्पति पदार्थ का	कम्पोस्ट में अपघर	टन ऊ	माक्षेपी अभि	क्रिया माना जाता	है। क्यों ?	3
			अथवा						
	(ख)	प्रकार	न अभिक्रियाओं क की अभिक्रियाओं व भेकर्मक(कों) और उ	के लिए एक-एक र	ासाया	नेक समीकरण	ा लिखिए तथा इ	•	3
31/2	/3			14) #				

24.	(a)	Writ	e one function	each of the f	ollowing,	in a seed :	2
		(i)	Seed coat		(ii)	Cotyledon	
		(iii)	Radicle		(iv)	Plumule	
			OR				
	(b)	Writ	e the main ste	ps to culture	yeast in t	the laboratory.	2
25.	(a)	whic		erge a paralle	el beam of	d the other convex, state f light falling on it. Draw a of the lens.	
			OR				
	(b)		y of light after s principal axis		rom a con	nvex lens emerges parallel	2
		(i)	Draw a label	lled ray diag	ram to she	ow it.	
		(ii)	•		v	re refraction from the lens cipal axis. Name the point.	1
26.			why is an ele function.	ctric fuse us	sed in an	electric circuit ? Briefly	2
				SECTION	ON C		
Ques	tions n	o. 27 t	to 33 are Short	Answer Typ	e question	es.	
27.	(a)	(i)	equation eac	ch for decon	position	action. Write one chemical reaction where energy is or electricity.	
		(ii)	Decomposition considered as	_		natter into compost is Why?	3
			OR				
	(b)	two	oination reaction types of reacti	ons? Write o	one chemioning the na	called the opposite of cal equation each for these ame of the reactant(s) and	: [
		the p	product(s) invo	lved in the re	eactions.		3
31/2	2/3			15	#	[P.	T.O.]

28. दो पदार्थों 'A' और 'B' का अलग-अलग वायु में दहन किया गया। 'A' के दहन से प्राप्त राख को जल में घोलकर 'X' विलयन प्राप्त हुआ, जबिक 'B' के दहन से उत्पन्न धूम (धुआँ) को जल में प्रवाहित करके 'Y' विलयन प्राप्त हुआ। दोनों विलयनों – 'X' और 'Y' का pH पत्र द्वारा परीक्षण किया गया।

3

3

3

- (क) यदि pH पत्र को 'X' हल्का नीला रंग तथा 'Y' नारंगी रंग देता है, तो 'X' और 'Y' की प्रकृति और उनके pH का परिसर लिखिए।
- (ख) A और B दोनों में से कौन-सी धातु है ? अपने उत्तर की पृष्टि कीजिए।
- 29. (क) हॉर्मोन की परिभाषा लिखिए।
 - (ख) "हॉर्मोनों का स्रवण परिशुद्ध मात्रा में होना चाहिए। हमारे पास पुनर्भरण क्रियाविधि है जिसके द्वारा यह किया जाता है।" एक उदाहरण की सहायता से इस कथन की पृष्टि कीजिए।

30. किसी शुद्ध मटर के पौधे जिस पर अन्त्य पुष्प होते हैं, का पर-परागण किसी शुद्ध मटर के पौधे जिस पर अक्षीय पुष्प होते हैं, से कराया गया । F_1 पीढ़ी में, केवल अक्षीय पुष्प वाले पौधे ही प्राप्त हुए । F_1 पीढ़ी के पौधों का स्व-परागण कराया गया तथा F_2 पीढ़ी प्राप्त हुई ।

- (क) इस प्रकरण में आनुवंशिकता के पैटर्न की रचना कीजिए।
- (ख) F_2 पीढ़ी में प्राप्त पौधों का अनुपात ज्ञात कीजिए।
- 31. किसी ऑटोमोबाइल में पीछे का दृश्य देखने के लिए उपयोग होने वाले उत्तल दर्पण की फोकस दूरी 1.5 m है। यदि कोई 3 m ऊँची बस दर्पण से 6 m दूरी पर स्थित है, तो दर्पण सूत्र का उपयोग करके दर्पण में दिखाई देने वाली बस के प्रतिबिम्ब की स्थिति और साइज़ निर्धारित कीजिए।

-7.

3

3

3

- 32. 2 Ω, 3 Ω और 6 Ω के तीन प्रतिरोधक (i) श्रेणीक्रम और (ii) पार्श्वक्रम में संयोजित हैं। प्रतिरोधकों की इन व्यवस्थाओं को आरेखित कीजिए और प्रत्येक व्यवस्था का तुल्य प्रतिरोध ज्ञात कीजिए।
- 33. आहार श्रृंखला से होकर कुछ हानिकारक रसायन मानव शरीर में संग्रहित हो जाते हैं। इस परिघटना का नाम लिखिए। हमारे शरीर में इन रसायनों की अधिकतम सांद्रता होने के कारण की व्याख्या कीजिए।

31/2/3

16

#

28. Two substances 'A' and 'B' are burnt in air separately. For 'A', ashes are collected and dissolved in water to get solution 'X', while for 'B', fumes produced are passed through water to get solution 'Y'. Both the solutions 'X' and 'Y' are then tested with pH paper.

3

- (a) If 'X' gives light blue colour and 'Y' gives orange colour to the pH paper, then write the nature and range of pH of 'X' and 'Y'.
- (b) Which one of the two A and B, is a metal? Justify your answer.
- **29.** (a) Define hormone.
 - (b) "Hormones should be secreted in precise quantities. We have a feedback mechanism through which this is done." With the help of an example justify the statement.

3

30. A pure pea plant bearing terminal flowers was cross-pollinated with a pure plant having axillary flowers. In F_1 generation, plants with axial flowers only were obtained. F_1 generation plants are self-pollinated and F_2 generation is obtained.

3

- (a) Work out the pattern of inheritance in this case.
- (b) What will be the ratio of plants obtained in F_2 generation?
- 31. A convex mirror used for rear view on an automobile has a focal length of 1.5 m. If a 3 m high bus is located at 6.0 m from the mirror, use mirror formula to determine the position and size of the image of the bus as seen in the mirror.

3

32. Three resistors of 2Ω , 3Ω and 6Ω are connected in (i) series, and (ii) parallel. Draw the arrangements of the resistors and find the equivalent resistance of each arrangement.

3

33. Some harmful chemicals get accumulated in human bodies through the food chain. Name this phenomenon. Explain the reason of maximum concentration of these chemicals found in our bodies.

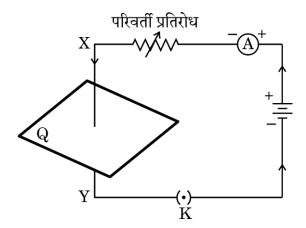
3

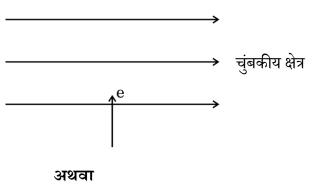
31/2/3

17

#

[P.T.O.]




खण्ड घ

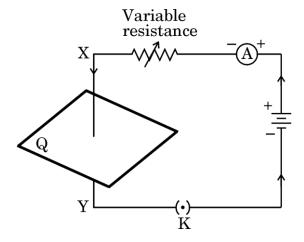
प्रश्न संख्या 34 से 36 दीर्घ-उत्तरीय प्रकार के प्रश्न हैं।

34. (क) दिए गए आरेख में सीधे चालक XY से धारा प्रवाहित होना दर्शाया गया है।

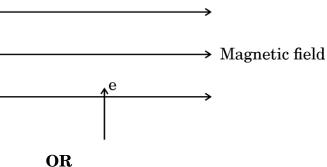
- (i) इस आरेख को अपनी उत्तर-पुस्तिका पर आरेखित कीजिए तथा चालक X से Y की ओर धारा प्रवाहित होने पर चुंबकीय क्षेत्र रेखाएँ आरेखित कीजिए।
- उपर्युक्त स्थिति में चुंबकीय क्षेत्र रेखाओं की दिशा निर्धारित करने में उपयोग होने वाले
 नियम का नाम लिखिए और उसका उल्लेख कीजिए।
- (iii) फ्लेमिंग का वामहस्त नियम बताइए। इस नियम का उपयोग करके, आरेख में दर्शाए अनुसार एकसमान चुंबकीय क्षेत्र में प्रवेश करते किसी इलेक्ट्रॉन पर लगने वाले बल की दिशा निर्धारित कीजिए।

31/2/3

18


Ħ

SECTION D


Questions no. 34 to 36 are Long Answer Type questions.

34. (a) The given figure shows the current passing through the straight conductor XY.

- (i) Copy the diagram and draw the magnetic field lines when current flows from conductor X to Y.
- (ii) Name and state the rule used in determining the direction of the magnetic field lines in the situation given above.
- (iii) State Fleming's left hand rule. Using this rule, determine the direction of force applied on an electron entering a uniform magnetic field as shown in the figure.

5

Get More Learning Materials Here : 🏬 CLICK HERE ≫ 🗼 www.studentbro.in

- परिनालिका की परिभाषा लिखिए। किसी सीधी धारावाही परिनालिका के भीतर (ख) (i) और उसके चारों ओर उत्पन्न चुंबकीय क्षेत्र रेखाओं का पैटर्न आरेखित कीजिए। इस पैटर्न पर (i) धारा की दिशा, (ii) परिनालिका के सिरों के निकट क्षेत्र रेखाओं की दिशा तथा (iii) एकसमान चुंबकीय क्षेत्र का प्रदेश अंकित कीजिए।
 - धारावाही परिनालिका का उपयोग करके आप कोई विद्युत-चुंबक किस प्रकार (ii) बनाएँगे ?

5

कोई यौगिक 'X' जिसके एक अणु में दो कार्बन परमाणु हैं नीले लिटमस को लाल कर (i) **35.** (क) देता है तथा 'X' का 5-8% जलीय विलयन बृहत रूप से परिरक्षक की भाँति उपयोग किया जाता है। यौगिक 'X' को पहचानिए और इसकी संरचना लिखिए।

किसी खनिज अम्ल के साथ इसकी pH प्रकृति की तुलना कीजिए। (ii)

 $\frac{1}{2}$

'X' की ऐल्कोहॉलों से अभिक्रिया द्वारा मृदु गंध के यौगिक बनते हैं, जिनका उपयोग (iii) परफ़्यूम बनाने में किया जाता है। इस अभिक्रिया का नाम और इसका रासायनिक समीकरण लिखिए।

 $1\frac{1}{2}$

'X' में सोडियम कार्बोनेट मिलाने पर कोई रंगहीन गैस निकलती है, जो चूने के पानी (iv) को दूधिया कर देती है। होने वाली अभिक्रिया का रासायनिक समीकरण और बनने वाले लवण का नाम लिखिए।

 $1\frac{1}{2}$

अथवा

- प्रत्येक का एक-एक उदाहरण देते हुए संरचनात्मक सूत्र के साथ संतृप्त और असंतृप्त (i) **(ख)** हाइड़ोकार्बन के बीच अन्तर स्पष्ट कीजिए।
 - असंतृप्त हाइड्रोकार्बन को संतृप्त हाइड्रोकार्बन में परिवर्तित करने की विधि लिखिए। (ii) उस उद्योग का नाम लिखिए जिसमें इस अभिक्रिया का सामान्यत: उपयोग किया जाता है।
 - उस हाइड्रोकार्बन का नाम और संरचना लिखिए जिसके एक अणु में चार कार्बन (iii) परमाणु तथा दोहरा आबंध हैं।

5

- (b) (i) Define the term solenoid. Draw the pattern of the magnetic field lines in and around a current carrying straight solenoid. Mark on the pattern the (i) direction of current, (ii) direction of field lines near the ends of the solenoid, and (iii) region where the magnetic field is uniform.
 - (ii) How would you make an electromagnet using a current carrying solenoid?
- 35. (a) (i) A compound X' having two carbon atoms in its molecule turns blue litmus red and 5-8% solution of X' in water is widely used as a preservative. Identify the compound X' and write its structure.
 - (ii) Compare its pH nature with a mineral acid.
 - (iii) 'X' on reacting with alcohols produces sweet smelling compounds, used in making perfumes. Name the reaction and write its chemical equation. $1\frac{1}{2}$
 - (iv) When sodium carbonate is added to 'X', a colourless gas is produced which turns lime water milky. Write the chemical equation for the reaction giving the name of the salt produced.

OR

- (b) (i) Differentiate between saturated and unsaturated hydrocarbons by giving one example each, with a structural formula.
 - (ii) Write the method of converting an unsaturated hydrocarbon into a saturated hydrocarbon. Name the industry where this reaction is commonly used.
 - (iii) Write the name and structure of a hydrocarbon having double bond and four carbon atoms in its one molecule.

31/2/3

21

#

[P.T.O.]

5

 $1\frac{1}{2}$

- **36.** (क) (i) "विभिन्न जन्तुओं की क्षुद्रांत्र की लंबाई उनके द्वारा खाए जाने वाले आहार पर निर्भर करती है।" इस कथन की पृष्टि कीजिए।
 - (ii) मानव में भोजन के पाचन में अग्न्याशय और पित्त रस की भूमिका पर चर्चा कीजिए।
 - (iii) पाचित भोजन को अवशोषित करने के लिए क्षुद्रांत्र की अभिकल्पना किस प्रकार की गई है ?

अथवा

- (ख) (i) कंठ में उपस्थित उपास्थि के वलयों की भूमिका का उल्लेख कीजिए।
 - (ii) श्वसन चक्र के दौरान वायु को अंदर लेते समय पसलियों और डायाफ्राम की भूमिका का वर्णन कीजिए।
 - (iii) कठोर व्यायाम करते समय हमारी पेशियों में क्रैंप क्यों आते हैं ? व्याख्या कीजिए।

खण्ड ङ

निम्नलिखित प्रश्न स्रोत-आधारित/केस-आधारित प्रश्न हैं। केस को ध्यानपूर्वक पढ़िए और उसके नीचे दिए गए प्रश्नों के उत्तर दीजिए।

- 37. किसी लड़की के जन्म के समय ही उसके अंडाशय में हज़ारों अपरिपक्व अंड होते हैं। यौवनारम्भ में, इनमें से कुछ परिपक्व होने लगते हैं। दोनों अंडाशयों में से एक अंडाशय द्वारा प्रतिमाह एक परिपक्व अंड मोचित होता है। दो अंडवाहिकाएँ संयुक्त होकर एक लचीली थैलेनुमा संरचना का निर्माण करती हैं जिसे गर्भाशय कहते हैं।
 - (क) मानव महिला में निषेचन का स्थल लिखिए।

(ख) गर्भाशय किस प्रकार स्वयं को विकसित होते भ्रूण की प्राप्ति और उसके पोषण के लिए तैयार करता है ? व्याख्या कीजिए।

(ग) (i) क्या होता है जब अंड का निषेचन नहीं होता है ?

अथवा

(ग) (ii) विकसित होता भ्रूण किस प्रकार माता के रुधिर से पोषण प्राप्त करता है ? व्याख्या कीजिए।

31/2/3

22

#

5

5

1

1

2

- 36. "The length of the small intestine in various animals (a) (i) depends on the food they eat." Justify the statement.
 - (ii) Discuss the role of the pancreas and bile juice in the digestion of food in human beings.
 - (iii) How is the small intestine designed to absorb digested food? 5

OR

- (b) (i) State the role of rings of cartilage present in the throat.
 - (ii) Discuss the role of the ribs and diaphragm when air is taken in during the breathing cycle.
 - (iii) Why do we get muscle cramps during heavy exercise? Explain.

SECTION E

The following questions are source-based/case-based questions. Read the case carefully and answer the questions that follow.

- **37.** When a girl is born, the ovaries already contain thousands of immature eggs. On reaching puberty, some of these start maturing. One matured egg is released every month by one of the ovaries. The two oviducts unite into an elastic bag-like structure known as uterus.
 - Write the site of fertilization in human female. (a)

(b) How does the uterus prepare itself to receive and nurture the growing embryo? Explain.

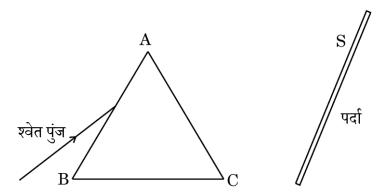
(c) (i) What happens when the egg is not fertilized? 2

OR.

(c) How does the developing embryo get nutrition from the (ii) mother's blood? Explain.

31/2/3 [P.T.O.]

CLICK HERE


5

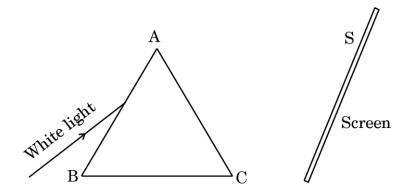
1

1

किसी व्यक्ति ने सूर्य के श्वेत प्रकाश के महीन पुंज को किसी लघु द्वारक से किसी अँधेरे कमरे में प्रवेश 38. कराया तथा प्रकाश पुंज के पथ में किसी काँच के प्रिज़्म को इस प्रकार रखा गया कि प्रकाश पुंज आरेख में दर्शाए अनुसार प्रिज़्म के फलक AB पर आपतन करे।

किसी पर्दे S को प्रिज़्म के दूसरी ओर, AC के सामने रखा गया। प्रिज़्म को धीरे-धीरे घुमाने पर, पर्दे पर वर्णों की आकर्षक पट्टी प्राप्त होती है। यह सूर्य के प्रकाश का स्पेक्ट्रम है।

- उस परिघटना का नाम लिखिए जिसके कारण कोई प्रिज़्म आपतित श्वेत प्रकाश को वर्णों की (क) पट्टी में विभक्त कर देता है।
- उपर्युक्त प्रकरण में सात वर्णों की पट्टी प्राप्त होने का कारण लिखिए। (ख) 1
- नामांकित किरण आरेख की सहायता से, श्वेत प्रकाश के स्पेक्ट्रम का पुनर्योजन दर्शाने (i) **(11)** की प्रायोगिक व्यवस्था की व्याख्या कीजिए। 2


अथवा

इन्द्रधनुष बनना दर्शाने के लिए नामांकित किरण आरेख खींचिए। **(11)** (ii) 2

31/2/3

38. A person allowed a narrow beam of white light from the sun to enter a dark room through a small aperture and placed a glass prism in its path in such a manner that the beam falls on the face AB of the prism as shown in the figure.

A screen S is placed on the other side of the prism, facing AC. On turning the prism slowly, a beautiful band of colours is obtained on the screen. It is the spectrum of sunlight.

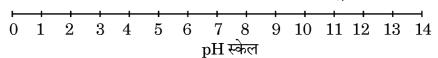
- (a) Name the phenomenon due to which a prism splits the incident white light into a band of colours.
- (b) State the reason of getting a band of seven colours in the above case.
- (c) (i) Explain with the help of a labelled ray diagram, an experimental arrangement to show the recombination of the spectrum of white light.

 \mathbf{OR}

(c) (ii) Draw a labelled ray diagram to show the formation of a rainbow.

1

1


2

2

Get More Learning Materials Here:

39. अम्ल-क्षारक सूचकों का उपयोग अम्ल और क्षारक में विभेदन करने के लिए किया जा सकता है। सार्वित्रिक सूचक, जो अनेक सूचकों का मिश्रण है, अम्लों और क्षारकों की विभिन्न सांद्रताओं के लिए विभिन्न रंग दर्शाता है, जिसके द्वारा pH स्केल, जो 0 – 14 तक है, पर उनके pH को सूचित करता है। pH पत्र द्वारा किसी विलयन का pH मापा जाता है जो सार्वित्रिक सूचक अंतर्भारित पेपर होता है।

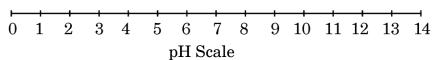
निम्नलिखित प्रश्नों के उत्तर दीजिए:

- (क) विलयन P कोई प्रबल अम्ल है जबिक विलयन Q कोई प्रबल क्षारक है। pH स्केल पर आप इन विलयनों P और Q को कहाँ रखेंगे ?
- (ख) किसी विलयन का pH, 7 है। उस यौगिक का नाम लिखिए जिसका उपयोग आप इस विलयन के (i) pH में वृद्धि तथा (ii) pH में कमी करने के लिए करेंगे।
- (ग) (i) जब किसी विलयन के pH में 4 से 2 तक कमी होती है, तो उसके हाइड्रोनियम आयन की सांद्रता पर क्या प्रभाव होता है ? इससे pH पत्र के रंग में होने वाले परिवर्तन का उल्लेख कीजिए।

अथवा

(ग) (ii) कोई व्यक्ति अपच के कारण अपने उदर में पीड़ा और जलन का अनुभव कर रहा है। उसके उदर के तरल पदार्थ का pH क्या हो सकता है? इसके उपचार के लिए लोगों द्वारा उपयोग की जाने वाली सामान्य औषधि का नाम लिखिए। इस उद्देश्य के लिए प्राय: उपयोग किए जाने वाले "मिल्क ऑफ मैग्नीशिया" का रासायनिक नाम लिखिए।

2


1

1

2

39. Acid-base indicators can be used to distinguish between an acid and a base. Universal indicator, a mixture of several indicators, shows different colours at different concentrations of acids and bases, thereby indicating their pH on the pH scale of 0-14. The pH of a solution is measured by pH paper, which is a paper impregnated with a universal indicator.

Answer the following questions:

- (a) Solution P is a strong acid while solution Q is a strong base. On the pH scale, where would you place the solutions P and Q?
- (b) A solution has a pH of 7. Name a compound you would use to (i) increase its pH, and (ii) decrease its pH.
- (c) (i) When the pH of a solution is decreased from 4 to 2, what effect does it produce on its hydronium ion concentration? State the colour change shown by the pH paper.

OR

(c) (ii) A person is feeling pain and irritation in the stomach due to indigestion. What could be the pH of the fluid in the stomach? Write the common name of the medicines people use for remedy. Give the chemical name of "milk of magnesia" often used for this purpose.

31/2/3

1

1

2

Marking Scheme Strictly Confidential (For Internal and Restricted use only) Secondary School Examination, 2025 SUBJECT: SCIENCE (Q.P. CODE 31/2/1)

	3323231 : 33121132 (Q.I. : 3322 31121)
Gen	eral Instructions: -
1	You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.
2	"Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in Newspaper/Website, etc. may invite action under various rules of the Board and IPC."
3	Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.
4	The Marking Scheme carries only suggested value points for the answers.
	These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.
5	The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after deliberation and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
6	Evaluators will mark($$) wherever answer is correct. For wrong answer CROSS 'X' be marked. Evaluators will not put right ($$) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
7	If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
8	If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
9	If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".
10	No marks to be deducted for the cumulative effect of an error. It should be penalized only

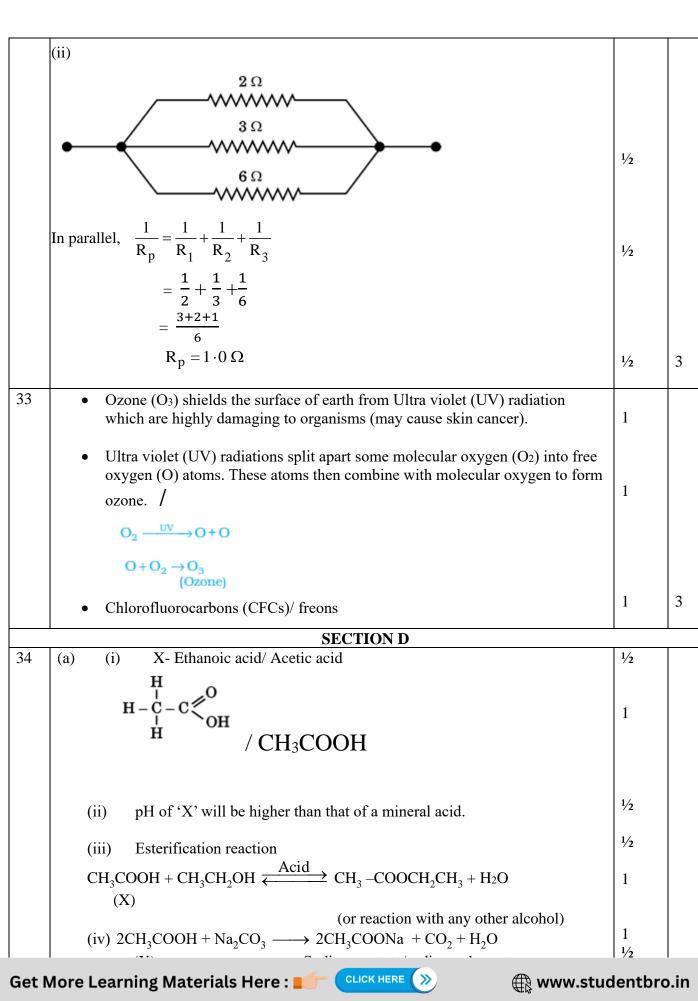
Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours 12 every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper. Ensure that you do not make the following common types of errors committed by the 13 Examiner in the past:-Leaving answer or part thereof unassessed in an answer book. Giving more marks for an answer than assigned to it. Wrong totaling of marks awarded on an answer. Wrong transfer of marks from the inside pages of the answer book to the title page. Wrong question-wise totaling on the title page. Wrong totaling of marks of the two columns on the title page. Wrong grand total. Marks in words and figures not tallying/not same. Wrong transfer of marks from the answer book to online award list. Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.) Half or a part of answer marked correct and the rest as wrong, but no marks awarded. While evaluating the answer books if the answer is found to be totally incorrect, it should 14 be marked as cross (X) and awarded zero (0)Marks. 15 Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously. The Examiners should acquaint themselves with the guidelines given in the "Guidelines 16 for Spot Evaluation" before starting the actual evaluation. Every Examiner shall also ensure that all the answers are evaluated, marks carried over to **17** the title page, correctly totalled and written in figures and words. The candidates are entitled to obtain photocopy of the Answer Book on request on 18 payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out

strictly as per value points for each answer as given in the Marking Scheme.

SECONDARY SCHOOL EXAMINATION, 2025

MARKING SCHEME

CLASS: X SCIENCE (Subject Code–086)


[Paper Code: SET 31/2/1]

	Maximum Maximu						
Q. No.	EXPECTED ANSWERS / VALUE POINTS	Marks	Tota				
NO.	SECTION A		Mar				
1	$(D) / CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O + Energy$	1	1				
2	(C) / Sodium	1	1				
3	(C)/7.0 to 7.8	1	1				
4	(B) / When it is heated with iron (III) oxide, molten iron is obtained.	1	1				
5	(C) / Brass and Bronze	1	1				
6	(D) /Amount of water in guard cells	1	1				
7	(B) /Capillaries	1	1				
8	(C) / Change in amount of water in cells	1	1				
9	(B) / Vegetative buds produced in the notches of the leaf	1	1				
10	(C)/ Ovary and testis both	1	1				
11	10		-				
	$(A) / \frac{10}{9}$	1	1				
12	(B) / -20 cm	1	1				
13	(D) $/1$ and 6	1	1				
14	(B)/ 110 W	1	1				
15	$(C)/9\Omega$	1	1				
16	(C) / DDT, Polyester, Glass	1	1				
17	(B) /Both A and R are true, but R is <i>not</i> the correct explanation of A.	1	1				
18	(A) / Both A and R are true and R is the correct explanation of A.	1	1				
19	(C) /A is true, but R is false.	1	1				
20	(A) /Both A and R are true and R is the correct explanation of A.	1	1				
	SECTION B		I				
21	(a) Displacement reaction	1/2					
	$2AgNO_3 + Cu \longrightarrow 2Ag + Cu(NO_3)_2$	1/2					
	(b) Electrolytic refining						
		1					
22	() (1) 1 (4)	1	2				
22	(a) (1) and (4)	1					
	(b) (i) melting point increases with increasing molecular mass.	1/2					
	(ii) Solubility shows regular gradation/ decreases with increase in molecular mass.	1/2	2				
22		1/2					
23	• Pons,	1/2 1/2					
	Medulla, Cerebellum	1/2					
	CCICOCITUIII	/2					

	•	
(iii) Develops into root on germination of seed/future root	1/2	
(iv) Develops into shoot on germination of seed/future shoot OR	1/2	
(b) In a test tube take 10g sugar, add 100 ml of water and a pinch of yeast granules. Keep it in warm place for 1-2 hours.	2	2
25 (a) Concave lens	1	_
OR (b) (i)	1	
(ii) Principal focus /Focus	1	
26 P = 750 W, V = 220 V		2
• Current drawn by kettle, $I = \frac{P}{V}$		
= 750 W/220 V		
= 3·4 A	1/2	
	1/2	
• No, this kettle cannot be used. The appropriate drawn by the leastle is more than the face nation (2.4). So, the face		
• The current drawn by the kettle is more than the fuse rating (3A). So, the fuse will melt and break the circuit.	1	2
SECTION C	1	
27 (a) (i) A single reactant (substance) breaks down to give two or more products.	1/2	
• $CaCO_3(s) \xrightarrow{Heat} CaO(s) + CO_2(g)$	1/	
• $2AgCl(s) \xrightarrow{Sunlight} 2Ag(s) + Cl_2(g)$	1/2	
Get More Learning Materials Here : CLICK HERE Www.stuc	l ½ dentbro	o.in

	(ii) because energy (heat) is released.	1	
	OR (b)		
	 In combination reaction single product (substance) is formed from two or more reactants (substances) whereas in decomposition reaction a single reactant (substance) breaks down to give two or more products (substances). So, the two are opposite. Example of combination reaction 	1	
	C(s) + O ₂ (g)	1	
	CaCO ₃ (s) $\xrightarrow{\text{Heat}}$ CaO(s) + CO ₂ (g) Calcium carbonate Calcium Oxide Carbon dioxide	1	
	(any other suitable example) (Do not deduct marks if physical state not given)		3
28	Na O 2, 8, 1 2, 6		
	(i)		
	•	1/	
	Na (;;)	1/2	
	O: (ii)	1/2	
	 Formation of sodium oxide Na₂O 		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	
	Anion: O ²	1/2	
	Cation: Na +	1/2	3
29	(a) Hormones are chemical messengers (substances) which regulate body functions / Hormones are the biochemical substances produced in one part of the body and move to the target organ or tissue to regulate body function.(b) Example: If the sugar level in blood rises, it is detected by cells of pancreas which respond to produce more insulin to lower blood sugar level.	1	3
20	As the blood sugar level falls, it is detected by the cells of pancreas and insulin secretion is reduced. (or any other example)	2	3

		1
Parents Woman - free earlobe Man - attached earlobe (Ff) (ff)	1/2	
Gamete -	1/2	
F ₁ Ff Ff ff ff ff ff free earlobe	1/2	
50% 50%		
Progeny- Ff: ff	1/2	
(Award marks if answer is written in explanation form)	/ 2	
(b)Gene combinations of:		
Father – 'ff'	1/2	2
Mother – 'Ff'	1/2	3
(award marks if any other letter denoting the trait is used)		
31 (i) Nature: Virtual and erect	1	
(ii) Given h' = $+ 8.0$ cm, h = $+ 2.0$ cm, u = $- 6$ cm		
$m = \frac{h'}{h} = \frac{v}{u}$	1/2	
	/2	
$=\frac{8.0 \text{cm}}{2.0 \text{cm}} = \frac{\text{v}}{-6 \text{ cm}}$		
or $v = -24$ cm		
	1/2	
Thus, the image is at a distance of 24 cm from the lens.		
(iii) Lens formula $\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$	1/	
	1/2	
$\frac{1}{-24} - \frac{1}{-6} = \frac{1}{f}$		
$\frac{-1}{24} + \frac{1}{6} = \frac{1}{f}$		
$\frac{1}{8} = \frac{1}{f}$		
f = 8 cm	1/2	
Thus the focal length of the lens $= 8 \text{ cm}$		
22 (2)		3
32 (i) 30 60		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2	
In series $R_c = R_1 + R_2 + R_3$	1/2	
Get More Learning Materials Here : CLICK HERE >> www.s	tudentbro	o.in

(b) (i)

Saturated hydrocarbons	Unsaturated hydrocarbons
Compounds which have single covalent bond between all carbon atoms. / Compounds with general formula C_nH_{2n+2}	Compounds which have at least one double or triple bond between carbon and carbon atom. / Compounds with general formula C_nH_{2n} and C_nH_{2n-2}
Example: Propane H H H	Example: Propene- CH_2 = CH - CH_3 / H H - C = C - C - H H H H H Propyne H - C = C - C - H
(any other)	H (any other)

(ii)

• Addition of hydrogen in the presence of Ni orPd / Hydrogenation /

 $\mathbf{H} \searrow \mathbf{C} = \mathbf{C} \searrow \mathbf{H} \qquad \mathbf{H}_{2} \longrightarrow \mathbf{H} - \mathbf{C} - \mathbf{C} - \mathbf{H} - \mathbf{H}$ $\mathbf{H} \longrightarrow \mathbf{H} + \mathbf{H} \longrightarrow \mathbf{H$

• It is used in the hydrogenation of vegetable oil.

(iii) Butene

(any other)

1/2

1/2

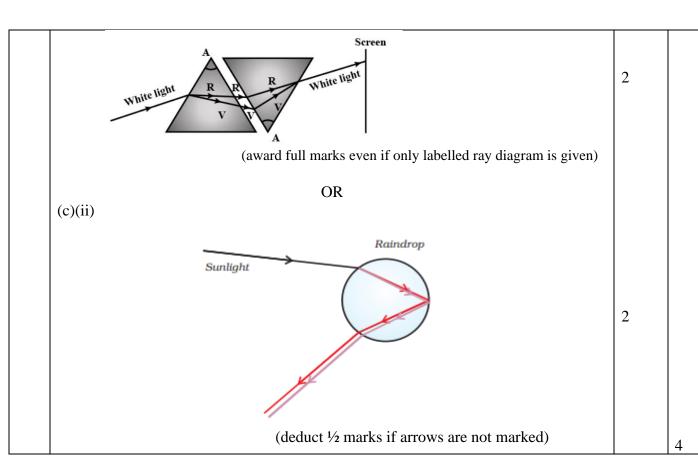
1

1

1

1

2


5

35 (a)

(i) Animals (Herbivores) eating grass need a longer small intestine to digest

	(ii) Role of Pancreas – Secrete pancreatic juice which contains trypsin for digesting		
	proteins, lipase for breaking down emulsified fats.		
	Role of Bile- Bile emulsifies fats and makes the medium alkaline in the small intestine so that pancreatic enzymes can act.		
	(iii) The inner lining of the small intestine has numerous finger-like projections called villi which increase the surface area for absorption of food. The villi are richly supplied with blood vessels which take the absorbed food to each and every cell of		
	the body.	1	
	OR (b) (i) 'Rings of cartilage' ensures that the air passage does not collapse in absence		
of air. (ii) Kings of cartnage ensures that the air passage does not conapse in absence		1	
	Ribs are lifted → Diaphragm flattens → Chest cavity become larger → Air is sucke into the lungs (Alveoli) and we breathe in		
	(iii) Due to lack of oxygen in our muscle cells (anaerobic respiration), pyruvate is converted into lactic acid, build-up of lactic acid in our muscles causes cramps.	2	5
	36 (a) (i)		3
	Variable resistance X X X X X X X X X X X X X		
	(ii) Right hand thumb rule Statement of the rule - Imagine holding a current carrying straight conductor in the right hand such that the thumb points towards the direction of current, then the fingers will wrap around the conductor in the direction of the field lines of the	¹ / ₂ 1	
	 magnetic field. (iii) According to Fleming's left-hand rule, stretch the thumb, forefinger and middle finger of your left hand such that they are mutually perpendicular. If the first finger points in the direction of magnetic field and the second finger in the direction of current, then the thumb will point in the direction of motion or the force acting on the conductor. 	1	
	Out of the plane/ unwards	1	
	Cot Mayo Loopping Matarials Hayo . = CUCK HERE		:

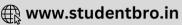
	OR		
	(b) (i) Solenoid is a coil of many turns of insulated copper wire wrapped closely in the shape of a cylinder.	1	
	uniform magnetic field lines current		
	Diagram Marking (i), (ii) and (iii)	1½ ½ ×3	
	(ii) By inserting a piece of magnetic material like soft iron inside the current carrying solenoid.	1	5
	SECTION E		
37	(a) $P - pH 0 \text{ to } 4$	1/2 1/2	
	Q – pH 12 to 14 (b) (i) By adding sodium hydroxide (or any other base) (ii) By adding hydrochloric acid (or any other mineral or strong acid)	1/2 1/2 1/2	
	(c)		
	(i) • Hydronium ion (H ₃ O ⁺ /H ⁺) ion concentration increases.	1	
	 Colour will change from yellow/orange to red/pink 	1	
	OR		
	(c) (ii) • low pH/ between 1 to 3	1	
	• by the use of antacids/milk of magnesia/sodium hydrogen carbonate	1/2	
	• Magnesium hydroxide/Mg(OH) ₂	1/2	4
38	 (a) Oviduct/ fallopian tube (b) The lining of uterus thickens (it becomes spongy) and is richly supplied with blood to nourish the growing embryo. 	1 1	
	(c) (i) The uterine lining slowly breaks down and comes out as blood and mucous along with unfertilized egg. Hence, menstruation will occur.	2	
	OR (c) (ii) With the help of special tissue called Placenta which is embedded in		
	uterine wall. It provides oxygen, nutrients from mother to embryo.	2	4
39	 (a) Dispersion of light (b) Different colours of light bend through different angles with respect to the incident ray as they pass through a prism 	1 1	
Get N	More Learning Materials Here : CLICK HERE (>>) Www.stuc	lentbro	o.in

Marking Scheme Strictly Confidential

(For Internal and Restricted use only) Secondary School Examination, 2025

SUBJECT : SCIENCE (Q.P. CODE 31/2/2)

General Instructions: -


3

4

5

- You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.
- "Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in Newspaper/Website, etc. may invite action under various rules of the Board and IPC."
 - Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.

 The Marking Scheme carries only suggested value points for the answers.
 - These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.
 - The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after deliberation and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
 - Evaluators will mark($\sqrt{\ }$) wherever answer is correct. For wrong answer CROSS 'X' be marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
- If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
- If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
- If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".
- 10 No marks to be deducted for the cumulative effect of an error. It should be penalized only

12 Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper. Ensure that you do not make the following common types of errors committed by the 13 Examiner in the past:-Leaving answer or part thereof unassessed in an answer book. Giving more marks for an answer than assigned to it. • Wrong totaling of marks awarded on an answer. Wrong transfer of marks from the inside pages of the answer book to the title page. Wrong question-wise totaling on the title page. Wrong totaling of marks of the two columns on the title page. Wrong grand total. Marks in words and figures not tallying/not same. Wrong transfer of marks from the answer book to online award list. Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.) Half or a part of answer marked correct and the rest as wrong, but no marks awarded. While evaluating the answer books if the answer is found to be totally incorrect, it should be 14 marked as cross (X) and awarded zero (0)Marks. Any unassessed portion, non-carrying over of marks to the title page, or totaling error 15 detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously. The Examiners should acquaint themselves with the guidelines given in the "Guidelines for **16 Spot Evaluation**" before starting the actual evaluation. Every Examiner shall also ensure that all the answers are evaluated, marks carried over to 17

The candidates are entitled to obtain photocopy of the Answer Book on request on payment

Examiners are once again reminded that they must ensure that evaluation is carried out

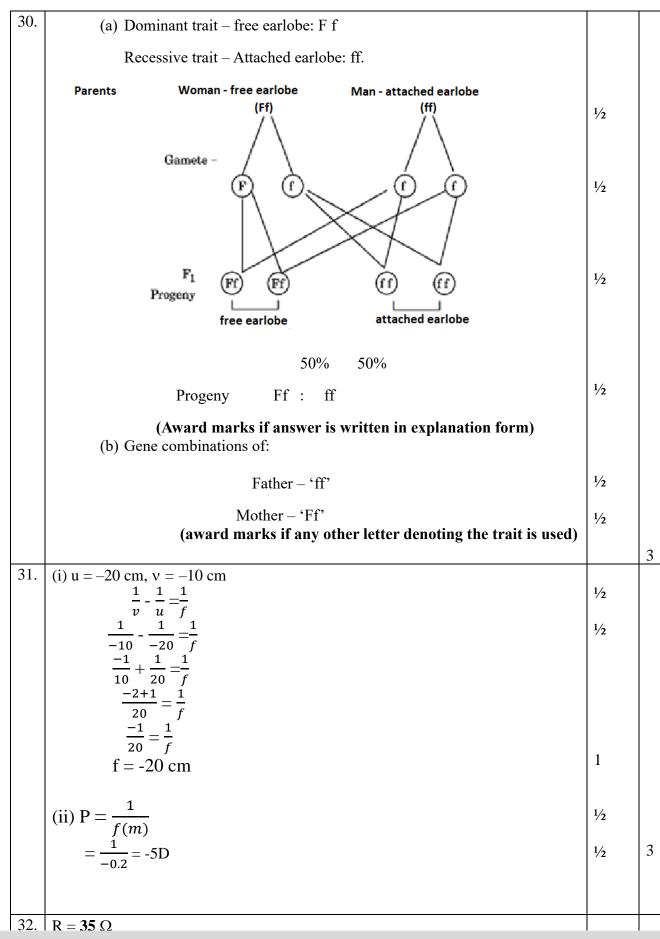
of the prescribed processing fee. All Examiners/Additional Head Examiners/Head

strictly as per value points for each answer as given in the Marking Scheme.

the title page, correctly totalled and written in figures and words.

SECONDARY SCHOOL EXAMINATION, 2025 MARKING SCHEME

CLASS: X []SCIENCE (Subject Code-086)


[Paper Code: SET 31/2/2]

Maximum Marks: 80

	Waxiiiuiii Waxii		
Q. No.	EXPECTED ANSWERS / VALUE POINTS	Marks	To M
2,00	SECTION A	1	
1.	(C) / Sodium	1	1
2.	(B) / When it is heated with iron (III) oxide, molten iron is obtained.	1	1
3.	(C)/ Na ₂ ZnO ₂	1	1
4.	(C) / Brass and Bronze	1	1
5.	(D) $/ \text{CH}_4 + 2\text{O}_2 \longrightarrow \text{CO}_2 + 2\text{H}_2\text{O} + \text{Energy}$	1	1
6.	(A) / Nitrogen	1	1
7.	(C)/ Ovary and testis both	1	1
8.	(B) /Capillaries	1	1
9.	(C) /As compared to the parent plant, vegetatively propagated plants show more variations.	1	1
10.	(C) / Change in amount of water in cells	1	1
11.	(C) / 9 Ω	1	1
12.	$(A) / \frac{10}{9}$	1	1
13.	(A) / Cornea	1	1
14.	(B) / Higher than that of its constituent metals.	1	1
15.	(B)/-20 cm	1	1
16.	(C) / DDT, Polyester, Glass	1	1
17.	(A) / Both A and R are true and R is the correct explanation of A	1	1
18.	(C) /A is true, but R is false.	1	1
19.	(A) / Both A and R are true and R is the correct explanation of A.	1	1
20.	(A) /Both A and R are true and R is the correct explanation of A.	1	1
	SECTION B		
21.	(a) $6 \text{ CO}_2 + 12\text{H}_2\text{O} \xrightarrow{\text{Sunlight}} \text{C}_6 \text{H}_{12}\text{O}_6 + 6\text{O}_2 + 6\text{H}_2\text{O}$	1	
	(b) $2\text{Pb}(\text{NO}_3)_2 \xrightarrow{\text{Heat}} 2\text{PbO} + 4\text{NO}_2 + \text{O}_2$	1	2
22.	(a) (1) and (4)	1	
	(b) (i) melting point increases with increasing molecular mass.	1/2	
	(ii) Solubility shows regular gradation/ decreases with increase in molecular mass.	1/2	2
23.	(a) Root – Movement: positive geotropism; Stimulus: gravity		
	/	1/2+ 1/2	
	Root – Movement: negative phototropism; Stimulus: light		
	(b) Shoot – Movement: Negative geotropism; Stimulus: gravity		
	/	1/2+ 1/2	
	Shoot – Movement: positive phototropism: Stimulus: light	/2 = /2	
	r shoor – wovement bosinve bhorononism, shimiling, non	1	1

	(ii) Food storage area of the seed/ reserve food material	1/2	
	(iii) Develops into root on germination of seed/future root	1/2	
	(iv) Develops into shoot on germination of seed/future shoot OR	1/2	
	(b) In a test tube take 10g sugar, add 100 ml of water and a pinch of yeast granules. Keep it in warm place for 1-2 hours.	2	
			2
25.	(a) Concave lens	1	
	OR (b)	1	
	$(i) \qquad \qquad F_1 \qquad \qquad F_2$	1	
	(ii) Principal focus /Focus	1	2
26.	P = 5 kW, V = 200V Current drawn by electrical appliance = $I = \frac{P}{V}$ = $\frac{5000}{200} = 25A$	1/2	
	No, The given electric fuse cannot be used The fuse will melt and appliance stops working.	1/2 1	2
	SECTION C	1	
27.	(a) (i) A single reactant (substance) breaks down to give two or more products.	1/2	
	• $CaCO_3(s) \xrightarrow{Heat} CaO(s) + CO_2(g)$	1/2	
1	Sunlight	1/2	l

	-		
	(any other suitable example) (ii) because energy (heat) is released.	1	
	OR		
	 In combination reaction single product (substance) is formed from two or more reactants (substances) whereas in decomposition reaction a single reactant (substance) breaks down to give two or more products (substances). So, the two are opposite. Example of combination reaction 	1	
	C(s) + O ₂ (g) − → CO ₂ (g) + Heat Carbon Oxygen Carbon dioxide • Example of decomposition reaction	1	
	$\begin{array}{cccc} \text{CaCO}_3 \left(s \right) & \xrightarrow{ \text{Heat} \text{CaO} \left(s \right) + \text{CO}_2} \\ \text{Calcium Carbonate} & \text{Calcium Oxide} & \text{Carbon dioxide} \end{array}$	1	
	(any other suitable example) (do not deduct marks if physical state not given)		3
28.	(a) Aluminium (Al) and Iron (Fe)	1/2+1/2	
	(b)		
	• $2Al + 3H_2O(g) \longrightarrow Al_2O_3 + 3H_2$	1	
	• $3\text{Fe} + 4\text{H}_2\text{O(g)} \longrightarrow \text{Fe}_3\text{O}_4 + 4\text{H}_2$	1	3
29.	(a) The process of detecting the signal or the input and responding to it by an	1	
	output action, completed quickly. Such a connection is called as reflex arc /A	1	
	pathway followed during reflex action is called reflex arc./		
	Sensory neuron Receptors = Heat/Pain Receptors in skin Effector = Muscle in arm (award mark if reflex arc is shown with a labelled diagram or a flowchart) • Reflex arc is formed in the spinal cord.	1	

		1	_
	Length of the wire = 1 m $R = \rho \frac{l}{A}$	1/2	
	Area of cross section, $A = \pi r^2$		
	Resistivity, $\rho = \frac{RA}{I} = \frac{35 \times \frac{22}{7} \times (10^{-4})^2}{1}$	1/2	
	$=110\times10^{-8}\Omega\mathrm{m}$	1	
	Resistivity of the wire will not change	1/2	3
	as it is a characteristic property of the material which does not depend on the dimensions of the wire.	1/2	
33.	Ozone (O ₃) shields the surface of earth from Ultra violet (UV) radiation which are highly damaging to organisms (may cause skin cancer).	1	
	 Ultra violet (UV) radiations split apart some molecular oxygen (O₂) into free oxygen (O) atoms. These atoms then combine with molecular oxygen to form ozone. 	1	
	$O_2 \xrightarrow{UV} O + O$ $O + O_2 \to O_3$		
	(Ozone)		
	• Chlorofluorocarbons (CFC)/ freons	1	3
	SECTION D		<u> </u>
34.	(a) (i) X - Ethanoic acid/ Acetic acid H	1/2	
	H-C-COOH / CH₃COOH	1	
	(ii) pH of 'X' will be higher than that of a mineral acid.	1/2	
	(iii) Esterification reaction	1/2	
	$CH_3COOH + CH_3CH_2OH \xrightarrow{Acid} CH_3 - COOCH_2CH_3 + H_2O$ (X)	1	
	(iv) $2CH_3COOH + Na_2CO_3 \longrightarrow 2CH_3COONa + CO_2 + H_2O$	1	

(b) (i)

Saturated hydrocarbons	Unsaturated hydrocarbons	
Compounds which have single covalent bond between all carbon atoms. / Compounds with general formula C_nH_{2n+2}	Compounds which have at least one double or triple bond between carbon and carbon atom. / Compounds with general formula C_nH_{2n} and C_nH_{2n-2}	1
Example – Propane H H H	Example – Propene- CH_2 = CH - CH_3 / H	1
/ CH ₃ CH ₂ CH ₃	Propyne $H - C \equiv C - C - H$	
(any other)	H (any other)	

(ii)

• Addition of hydrogen in the presence of Ni orPd / Hydrogenation /

$$\mathbf{H} > \mathbf{C} = \mathbf{C} < \mathbf{H} \qquad \mathbf{H}_{2} \qquad \mathbf{H} - \mathbf{C} - \mathbf{C} - \mathbf{H} - \mathbf{H}$$

$$\mathbf{H} = \mathbf{H} + \mathbf{H} + \mathbf{H} + \mathbf{H}$$

(any other)

• It is used in the hydrogenation of vegetable oil.

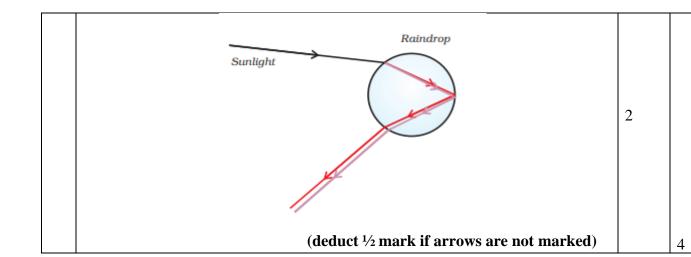
(iii) Butene

1

1

1/2

1/2


35. (a) (i) Variable resistance \mathbf{x} 11/2 K 1/2 (ii)Right hand thumb rule Statement of the rule - Imagine holding a current carrying straight conductor in the right hand such that the thumb points towards the direction of current, then the fingers will wrap around the conductor in the direction of the field lines of the magnetic field. (iii) According to Fleming's left-hand rule, stretch the thumb, forefinger and middle finger of your left hand such that they are mutually perpendicular. 1 If the first finger points in the direction of magnetic field and the second finger in the direction of current, then the thumb will point in the direction of motion or the force acting on the conductor. 1 Out of the plane/ upwards OR Solenoid is a coil of many turns of insulated copper wire (b)

wrapped closely in the shape of a cylinder.

	uniform magnetic field lines current		
	Diagram	1½	
	Marking (i), (ii) and (iii)	½×3	
	(ii) By inserting a piece of magnetic material like soft iron inside the current carrying solenoid.	1	5
36.	(a) (i) Animals (Herbivores) eating grass need a longer small intestine to digest cellulose. Meat is easier to digest, hence meat eating animals (Carnivores) have shorter small intestine.	2	
	(ii) Role of Pancreas – Secrete pancreatic juice which contains trypsin for digesting proteins, lipase for breaking down emulsified fats.	1	
	Role of Bile- Bile emulsifies fats and makes the medium alkaline in the small intestine so that pancreatic enzymes can act.	1	
	(iii) The inner lining of the small intestine has numerous finger-like projections called villi which increase the surface area for absorption of food. The villi are richly supplied with blood vessels which take the absorbed food to each and every cell of the body.	1	
	OR (b) (i) 'Rings of cartilage' ensures that the air passage does not collapse in absence of air.	1	
	(ii) Ribs are lifted → Diaphragm flattens → Chest cavity become larger → Air is sucked into the lungs (Alveoli) and we breathe in	2	

CLICK HERE >>

	SECTION E		
37.	(a) P – pH 0 to 4	1/2	
	Q – pH 12 to 14	1/2	
	(b) (i) By adding sodium hydroxide (or any other base)(ii) By adding hydrochloric acid (or any other mineral or strong acid)	1/2 1/2	
	(c) (i) • Hydronium ion (H_3O^+/H^+) ion concentration increases.	1	
	 Colour will change from yellow/orange to red/pink 	1	
	OR		
	(c)(ii) •low pH/ between 1 to 3	1	
	• by the use of antacids/milk of magnesia/sodium hydrogen carbonate	1/2	
	• Magnesium hydroxide/Mg(OH) ₂	1/2	4
38.	 (a) Oviduct/ fallopian tube (b) The lining of uterus thickens (it becomes spongy) and is richly supplied with blood to nourish the growing embryo. 	1	
	(c) (i) The uterine lining slowly breaks down and comes out as blood and mucous along with unfertilized egg. Hence, menstruation will occur.	2	
	OR		
	(c) (ii) With the help of special tissue called Placenta which is embedded		
	in uterine wall. It provides oxygen, nutrients from mother to embryo.	2	
20		1	4
39.	 (a) Dispersion of light (b) Different colours of light bend through different angles with respect to the incident ray as they pass through a prism. (c) (i) Two identical prisms are placed in inverted position with respect to each other as shown. When spectrum produced by prism A is passed through the prism B, a beam of white light emerges from the other side of the prism B. 	1	
	(award full marks even if only labelled ray diagram is given)	2	
	OR		
	(c)(ii)		

Marking Scheme Strictly Confidential (For Internal and Restricted use only)

Secondary School Examination, 2025 SUBJECT NAME: SCIENCE (Q.P. CODE 31/2/3)

Gene	eral Instructions: -
1	You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.
2	"Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in Newspaper/Website, etc. may invite action under various rules of the Board and IPC."
3	Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.
4	The Marking Scheme carries only suggested value points for the answers. These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.
5	The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after deliberation and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
6	Evaluators will mark($$) wherever answer is correct. For wrong answer CROSS 'X' be marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
7	If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
8	If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
9	If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".
10	No marks to be deducted for the cumulative effect of an error. It should be penalized only once.

12 Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper. Ensure that you do not make the following common types of errors committed by the 13 Examiner in the past:-Leaving answer or part thereof unassessed in an answer book. Giving more marks for an answer than assigned to it. • Wrong totaling of marks awarded on an answer. Wrong transfer of marks from the inside pages of the answer book to the title page. Wrong question-wise totaling on the title page. Wrong totaling of marks of the two columns on the title page. Wrong grand total. Marks in words and figures not tallying/not same. Wrong transfer of marks from the answer book to online award list. Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.) Half or a part of answer marked correct and the rest as wrong, but no marks awarded. While evaluating the answer books if the answer is found to be totally incorrect, it should be 14 marked as cross (X) and awarded zero (0)Marks. Any unassessed portion, non-carrying over of marks to the title page, or totaling error 15 detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously. The Examiners should acquaint themselves with the guidelines given in the "Guidelines for **16 Spot Evaluation**" before starting the actual evaluation. Every Examiner shall also ensure that all the answers are evaluated, marks carried over to 17

The candidates are entitled to obtain photocopy of the Answer Book on request on payment

Examiners are once again reminded that they must ensure that evaluation is carried out

of the prescribed processing fee. All Examiners/Additional Head Examiners/Head

strictly as per value points for each answer as given in the Marking Scheme.

the title page, correctly totalled and written in figures and words.

SECONDARY SCHOOL EXAMINATION, 2025 MARKING SCHEME

CLASS: X [SCIENCE (Subject Code-086)]

[Paper Code: SET 31/2/3]

Maximum Marks: 80

Q. No.	EXPECTED ANSWERS / VALUE POINTS	Marks	Total Marks
	SECTION A		
1.	(C)/1:8	1	1
2.	(C)/7.0 to 7.8	1	1
3.	(C) / Sodium	1	1
4.	(C) / Brass and Bronze	1	1
5.	(B) / When it is heated with iron (III) oxide, molten iron is obtained.	1	1
6.	(C)/ Right atrium receives deoxygenated blood from the body and	1	1
	sends it to right ventricle		
7.	(C) / Change in amount of water in cells	1	1
8.	(B) /Capillaries	1	1
9.	(D)/ Stigma, style, ovary and ovule	1	1
10.	(C)/ Ovary and testis both	1	1
11.	(B)/ 110 W	1	1
12.	(C) / 9 Ω	1	1
13.	(C)/ Ciliary muscles	1	1
14.	10	1	1
	A = A + A + A + A + A + A + A + A + A +		
15.	(B) / -20 cm	1	1
16.	(C) / DDT, Polyester, Glass	1	1
17.	(D)/ A is false, but R is true.	1	1
18.	(A) / Both A and R are true and R is the correct explanation of A.	$\frac{1}{1}$	1
19.	(C)/ A is true, but R is false.	1	1
20.	(A) /Both A and R are true and R is the correct explanation of A.	1	1
	SECTION B		1 -
21.	(a) Displacement reaction	1/2	
	$2AgNO_3 + Cu \longrightarrow 2Ag + Cu(NO_3)_2$	1/2	
	(b) Electrolytic refining	1	2
22.	The clusters of soap molecules in which the hydrophobic tails are in		
	the interior of the cluster (towards oil) and the ionic ends are on the	1	
	surface of the cluster (towards water) is called a micelle		
	Na ⁺		
	~~~ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		
	anny to the state of the state		
	Na+ Oil droplet	1	
	On 2 3 { 5 2 2 2 2		
	Of } { } } } \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		

22	M (C.1.)		<u> </u>
23.	<ul><li>Movement of voluntary muscles (walking, writing)</li><li>Thinking</li></ul>		
	Hearing		
	• Sight		
	(or any other relevant explanation)	2	
			2
24.	(a) (i) Protects the seed	1/2	
	(ii) Food storage area of the seed/ reserve food material	1/2	
	(iii) Develops into root on germination of seed/future root	1/2	
	(iv) Develops into shoot on germination of seed/future shoot	1/	
	OR	1/2	
	(b) In a test tube take 10g sugar, add 100 ml of water and a pinch of	2	
	yeast granules. Keep it in warm place for 1-2 hours.		
25.		1	2
25.	(a) Concave lens	1	
	· · · · · · · · · · · · · · · · · · ·	1	
		1	
	OR		
	(b)		
	(i)		
	$\wedge$		
		1	
	$F_1$ $F_2$		
	<del>\</del>		
	(ii) Principal focus /Focus	1	2
26.	An electric fuse is placed in series with the device.	1/2	
	• Electric fuse is used to prevent the electric circuit from a		
	possible damage by stopping the flow of unduly high electric		
	current. If current larger than the specified value flows through	11/	
	the circuit, the fuse melts and breaks the electric circuit.	11/2	
	SECTION C		2
	DECTION		

• $CaCO_3$ (s) $\xrightarrow{\text{Heat}}$ $CaO(s) + CO_2(g)$ • $2AgCl$ (s) $\xrightarrow{\text{Sunlight}}$ $2Ag(s) + Cl_2(g)$ • $2H_2O$ (l) $\xrightarrow{\text{Electric}}$ $2H_2(g) + O_2(g)$ (any other suitable example)  (ii) because energy (heat) is released.  OR	
• $2H_2O(1)$ $\xrightarrow{\text{Electric}} 2H_2(g) + O_2(g)$ $1/2$ (any other suitable example)  (ii) because energy (heat) is released. 1  OR	
(any other suitable example)  (ii) because energy (heat) is released.  OR	
(ii) because energy (heat) is released.  OR	
OR	
(b)	
<ul> <li>In combination reaction single product (substance) is formed from two or more reactants (substances) whereas in decomposition reaction a single reactant (substance) breaks down to give two or more products (substances). So, the two are opposite.</li> <li>Example of combination reaction</li> </ul>	
$\begin{array}{cccc} C(s) & + & O_2(g) & \longrightarrow & CO_2(g) + Heat \\ Carbon & Oxygen & Carbon dioxide & & & 1 \end{array}$	
• Example of decomposition reaction $CaCO_3(s) \xrightarrow{\text{Heat}} CaO(s) + CO_2$ Calcium carbonate Calcium Oxide Carbon dioxide	
(any other suitable example) (do not deduct marks if physical state not given)	3
28. (a) $X - Basic Y-Acidic$ $\downarrow \qquad \qquad \downarrow$ $pH range 9-11 pH range 4-6$	1
(b) 'A' – metal, because it forms basic oxide.	/ ₂ 3
29. (a) Hormones are chemical messengers (substances) which regulate body functions / Hormones are the biochemical substances produced in one part of the body and move to the target organ or tissue to regulate body function.	
(b) Example:  If the sugar level in blood rises, it is detected by cells of pancreas which respond to produce more insulin to lower blood sugar level.  As the blood sugar level falls, it is detected by the cells of pancreas and insulin secretion is reduced.  (or any other example)	

		Т	
30.	(a)		
	Parents Axillaryflowers Terminal flowers		
	(AA) (aa)		
	$\downarrow$ $\downarrow$		
	Gametes (A)		
	F ₁ generation Aa All axillary	1	
	flowering plants	1	
	$\underline{F_2}$ generation Aa $\times$ Aa		
	(A) (a)		
	A AA A		
	Axillary Axillary  Aa aa	1	
	Aa aa Axillary Terminal		
	(b) Ratio: 3:1 (Axillary: Terminal)	1	3
31.	Here $f = +1.5$ m; $u = -6.0$ m; $h = 3$ m		
	$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$	1/2	
	$\frac{1}{v} + \frac{1}{-6} = \frac{1}{1.5}$	1/	
	1 1 1	1/2	
	$\frac{1}{v} = \frac{1}{6} + \frac{1}{1.5}$		
	$v = \frac{6}{5} = 1.2 \text{ m}$	1	
		1/2	
	$\frac{h'}{h} = \frac{-v}{u}$	-	
	$\frac{h'}{3} = \frac{1.2}{6}$		
	h' = 0.6  m	1/2	3
32.	(i) II - 0.0 III		
	2Ω 3Ω 6Ω		
	• • • • • • • • • • • • • • • • • • • •	1/2	
	In series, $R_s = R_1 + R_2 + R_3$	1/2	
	$= (2+3+6) \Omega = 11 \Omega$	1/2	
		'2	
1		I	ı

	(ii)		
	$\begin{array}{c} 2\Omega\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}$	1/2	
	In parallel, $\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$ $= \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$ $3+2+1$	1/2	
	$= \frac{3+2+1}{6}$ $R_{p} = 1 \cdot 0 \Omega$	1/	3
33.	Biological magnification	¹ / ₂ ¹	
	Reason:     These chemicals are not biodegradable and they get accumulated over successive trophic levels. Since, human beings occupy the top level in a food chain, they are affected the most.	2	3
	SECTION D		
34.	Variable resistance  Y  Variable resistance  X  K	1½	
	(ii) Right hand thumb rule	1/2	
	Statement of the rule - Imagine holding a current carrying straight conductor in the right hand such that the thumb points towards the direction of current, then the fingers will wrap around the conductor in	1	

(iii) According to Fleming's left-hand rule, stretch the thumb, forefinger and middle finger of your left hand such that they are mutually perpendicular. If the first finger points in the direction of magnetic field and the second finger in the 1 direction of current, then the thumb will point in the direction of motion or the force acting on the conductor. 1 Out of the plane/ upwards OR (b) Solenoid is a coil of many turns of insulated (i) 1 copper wire wrapped closely in the shape of a cylinder. magnetic field lines uniform magnetic field Diagram 11/2  $\frac{1}{2} \times 3$ Marking (i), (ii) and (iii) 5 (ii) By inserting a piece of magnetic material like soft iron inside the current carrying solenoid. X - Ethanoic acid/ Acetic acid 35. 1/2 (i) (a) 1 / CH₃COOH (ii) pH of 'X' will be higher than that of a mineral acid.  $\frac{1}{2}$ (iii) Esterification reaction 1/2  $CH_3COOH + CH_3CH_2OH \xrightarrow{Acid} CH_3 - COOCH_2CH_3 + H_2O$ 1

(iv) 
$$2CH_3COOH + Na_2CO_3 \longrightarrow 2CH_3COONa + CO_2 + H_2O$$
  
(X) Sodium acetate/sodium ethanoate

(balancing of equation is not mandatory)

1

1

1

OR

(b) (i)

Saturated hydrocarbons	Unsaturated hydrocarbons
Compounds which have single covalent bond between all carbon atoms. / Compounds with general formula $C_nH_{2n+2}$	Compounds which have at least one double or triple bond between carbon and carbon atom. / Compounds with general formula $C_nH_{2n}$ and $C_nH_{2n-2}$
Example – Propane  H H H	Example – Propene- CH ₂ =CH-CH ₃ /  H
(any other)	Propyne H - C $\equiv$ C - C - H H (any other)

(ii)

Addition of hydrogen in presence of Ni or Pd / Hydrogenation /

$$\mathbf{H} > \mathbf{C} = \mathbf{C} < \mathbf{H} \qquad \mathbf{H}_2 \longrightarrow \mathbf{H} - \mathbf{H}_1 - \mathbf{H}_1$$

$$\mathbf{H} = \mathbf{H}_1 - \mathbf{H}_2$$

$$\mathbf{H} = \mathbf{H}_1 - \mathbf{H}_2$$

(or any other)

• It is used in the hydrogenation of vegetable oil.

(iii) Butene

1/

1

		I	
	H H H H H H H H H H H H H H H H H H H	1/2	5
36	(a) (i) Animals (Herbivores) eating grass need a longer small intestine to digest cellulose. Meat is easier to digest, hence meat eating animals (Carnivores) have shorter small intestine.	2	
	(ii) Role of Pancreas – Secrete pancreatic juice which contains trypsin for digesting proteins, lipase for breaking down emulsified fats.	1	
	Role of Bile- Bile emulsifies fats and makes the medium alkaline in the small intestine so that pancreatic enzymes can act.	1	
	(iii) The inner lining of the small intestine has numerous finger-like projections called villi which increase the surface area for absorption of food. The villi are richly supplied with blood vessels which take the absorbed food to each and every cell of the body.  OR	1	
	(b) (i) 'Rings of cartilage' ensures that the air passage does not collapse in absence of air.	1	
	(ii) Ribs are lifted → Diaphragm flattens → Chest cavity become larger → Air is sucked into the lungs (Alveoli) and we breathe in	2	
	(iii) Due to lack of oxygen in our muscle cells (anaerobic respiration), pyruvate is converted into lactic acid, build-up of lactic acid in our muscles causes cramps.	2	5
	SECTION E		
37.	<ul> <li>(a) Oviduct/ fallopian tube</li> <li>(b) The lining of uterus thickens (it becomes spongy) and is richly supplied with blood to nourish the growing embryo.</li> </ul>	1	
	(c) (i) The uterine lining slowly breaks down and comes out as blood and mucous along with unfertilized egg. Hence, menstruation will occur.	2	
	OR		
	(c) (ii) With the help of special tissue called Placenta which is embedded in uterine wall. It provides oxygen, nutrients from mother to embryo.	2	4
38.	<ul> <li>(a) Dispersion of light</li> <li>(b) Different colours of light bend through different angles with respect to the incident ray as they pass through a prism.</li> <li>(c) (i) Two identical prisms are placed in inverted position with respect to each other as shown. When spectrum produced by</li> </ul>	1	

	(award full marks even if only labelled ray diagram is given)  OR  (c) (ii)  Real Real Real Real Real Real Real Real	2	
	(deduct ½ marks if arrows are not marked)		4
39.	(a) $P - pH 0 \text{ to } 4$	1/2	
	Q – pH 12 to 14	1/2	
	(b) (i) By adding sodium hydroxide (or any other base)	1/2	
	<ul><li>(ii) By adding hydrochloric acid (or any other mineral or strong acid)</li></ul>	1/2	
	(c)		
	(i) • Hydronium ion (H ₃ O ⁺ /H ⁺ ) ion concentration increases.	1	
	Colour will change from yellow/orange to red/pink	1	
	OR		
	(c) (ii) • low pH/ between 1 to 3	1	
	<ul> <li>by the use of antacids/milk of magnesia/sodium hydrogen carbonate</li> </ul>	1/2	
	• Magnesium hydroxide/Mg(OH)2	1/2	4

	si <del>ana mbara</del>			
	अंकन योजना परी नाम से प्रोप्तानिय			
	पूरी तरह से गोपनीय (केवल आंतरिक और प्रतिबंधित उपयोग के लिए)			
	माध्यमिक विद्यालय परीक्षा, 2025			
	विषय का नामः विज्ञान विषय कोडः 086 पेपर कोडः 31/2/1			
	सामान्य निर्देश: -			
1	आप जानते हैं कि अभ्यर्थियों के वास्तविक एवं सही मूल्यांकन में मूल्यांकन सबसे महत्वपूर्ण प्रक्रिया है।			
'	मूल्यांकन में एक छोटी सी गलती गंभीर समस्याओं का कारण बन सकती है जो उम्मीदवारों के भविष्य,			
	निर्देश प्रणाली और शिक्षण पेशे को प्रभावित कर सकती है। गलतियों से बचने के लिए आपसे अनुरोध है			
	कि मूल्यांकन शुरू करने से पहले स्पॉट मूल्यांकन दिशानिर्देशों को ध्यान से पढ़ें और समझें।			
2	"मूल्यांकन नीति एक गोपनीय नीति है क्योंकि यह आयोजित परीक्षाओं, किए गए मूल्यांकन और कई			
_	अन्य पहलुओं की गोपनीयता से संबंधित है। इसके किसी भी तरह से जनता के बीच लीक होने से परीक्षा			
	प्रणाली पटरी से उतर सकती है और लाखों उम्मीदवारों के जीवन और भविष्य पर असर पड़ सकता है।			
	इस नीति/दस्तावेज़ को किसी के साथ साझा करना, किसी पत्रिका में प्रकाशित करना और समाचार			
	पत्र/वेबसाइट आदि में छापना बोर्ड और आईपीसी के विभिन्न नियमों के तहत कार्रवाई को आमंत्रित			
	कर सकता है।			
3	मूल्यांकन अंकन योजना में दिए गए निर्देशों के अनुसार किया जाना है। इसे अपनी व्याख्या या किसी			
	अन्य विचार के अनुसार नहीं किया जाना चाहिए। अंकन योजना का कड़ाई से पालन किया जाना			
	चाहिए। हालाँकि, मूल्यांकन करते समय, जो उत्तर नवीनतम जानकारी या ज्ञान पर आधारित हैं और/या			
	न्वीन हैं, अन्यथा उनकी सत्यता का मूल्यांकन किया जा सकता है और उन्हें उचित अंक दिए जा सकते			
	हैं। कक्षा-X में, दो योग्यता-आधारित प्रश्नों का मूल्यांकन् करते समय, कृपया दिए गए उत्तर को समझने			
	का प्रयास करें और भले ही उत्तर अंकन योजना से न हो, लेकिन उम्मीदवार द्वारा सही योग्यता गिनाई			
	गई हो, उचित अंक दिए जाने चाहिए।			
4	अंकन योजना में उत्तरों के लिए केवल सुझाए गए मूल्य बिंदु हैं। ये केवल दिशानिर्देशों की प्रकृति में हैं			
	और संपूर्ण उत्तर का गठन नहीं करते हैं। विद्यार्थियों की अपनी अभिव्यक्ति हो सकती है और यदि			
_	अभिव्यक्ति सही है तो उसके अनुसार उचित अंक दिये जाने चाहिए। प्रधान-परीक्षक को पहले दिन प्रत्येक मूल्यांकनकर्ता द्वारा मूल्यांकन की गई पहली पांच उत्तर			
5	पुर्यान-पराद्वक की पहेला देन प्रत्यक मूल्याकनकता द्वारा मूल्याकन का गई पहेला पाय उत्तर पुस्तिकाओं का अध्ययन करना होगा, ताकि यह सुनिश्चित हो सके कि मूल्यांकन अंकन योजना में दिए			
	गए निर्देशों के अनुसार किया गया है। यदि कोई भिन्नता हो तो विचार-विमर्श के बाद उसे शून्य किया			
	जाए। मूल्यांकन के लिए शेष उत्तर पुस्तिकाएं यह सुनिश्चित करने के बाद ही दी जाएंगी कि व्यक्तिगत			
	मूल्यांकनकर्ताओं के अंकन में कोई महत्वपूर्ण भिन्नता नहीं है।			
6	जहां भी उत्तर सही होगा, मूल्यांकनकर्ता (√) अंकित करेंगे। गलत उत्तर के लिए क्रॉस 'X' अंकित किया			
	जाए। मूल्यांकनकर्ता मूल्यांकन करते समय सही (४) नहीं लगाएंगे जिससे यह आभास होगा कि उत्तर			
	सहीं है और कोई अंक नहीं दिया गया है। यह सबसे आम गलती है जो मूल्यांकनकर्ता कर रहे हैं।			
7	यदि किसी प्रश्न के कुछ भाग हैं, तो कृपया प्रत्येक भाग के लिए दाहिनी और अंक दें। फिर प्रश्न के			
	विभिन्न भागों के लिए दिए गए अंकों को जोड़ दिया जाना चाहिए और बाएं हाथ के हाशिये में लिखा जाना			
	चाहिए और घेरा बनाया जाना चाहिए। इसका सख्ती से पालन किया जा सके.			
8	यिंद किसी प्रश्न में कोई भाग नहीं है, तो बाएं हाथ के हाशिए में अंक दिए जाने चाहिए और घेरा लगाना			
	चाहिए। इसका भी सख्ती से पालन किया जा सकता है.			
9	यदि किसी छात्र ने एक अतिरिक्त प्रश्न का प्रयास किया है, तो अधिक अंकों के योग्य प्रश्न का उत्तर			
	बरकरार रखा जाना चाहिए और दूसरे उत्तर को "अतिरिक्त प्रश्न" नोट के साथ काट दिया जाना चाहिए।			
10	किसी त्रुटि के संचयी प्रभाव के लिए कोई अंक नहीं काटा जाएगा। इसे केवल एक बार दंडित किया			
4.4	जाना चाहिए।			
11	बिंदु का एक पूर्ण स्कैन 80 (उदाहरण 0 से 80/70/60/50/40/30 अंक जैसा कि प्रश्न पत्र में दिया गया है) का उपयोग करना होगा। यदि यह उपयुक्त है जो कामग अर्टिनरी में प्रवेश न हों।			
<u> </u>	है) का उपयोग करना होगा। यदि यह उपयुक्त है तो कृपया आर्डिनरी में प्रवेश न लें।			

सुनिश्चित करें कि आप अतीत में परीक्षक द्वारा की गई निम्नलिखित सामान्य प्रकार की त्रुटियाँ न करें:-किसी उत्तर के लिए दिए गए अंक से अधिक अंक देना। • किसी उत्तर पर दिए गए अंकों का गलत योग। • उत्तर पुस्तिका के अंदर के पन्नों से मुख्य पृष्ठ पर अंकों का गलत स्थानांतरण। शीर्षक पृष्ठ पर गलत प्रश्नवार योग। • उत्तर पुस्तिका में उत्तर या उसके किसी भाग को बिना मुल्यांकन किये छोड़ देना। • शीर्षक पृष्ठ पर दो कॉलमों के अंकों का गलत योग। • गलत योग। • शब्दों और अंकों में अंकित चिह्न मेल नहीं खाते/समान नहीं। • उत्तर पुस्तिका से ऑनलाइन पुरस्कार सूची में अंकों का गलत स्थानांतरण। • उत्तरों को सही के रूप में चिह्नित किया गया, लेकिन अंक नहीं दिए गए। (सुनिश्चित करें कि सही टिक मार्क सही और स्पष्ट रूप से इंगित किया गया है। यह केवल एक पंक्ति होनी चाहिए। गलत उत्तर के लिए एक्स के साथ भी ऐसा ही है।) • उत्तर के आधे या कुछ भाग को सही और शेष को गलत चिह्नित किया गया, लेकिन कोई अंक नहीं दिया गया। उत्तर पुस्तिकाओं का मूल्यांकन करते समय यदि उत्तर पूरी तरह से गलत पाया जाता है, तो इसे क्रॉस (X) के रूप में चिह्नित किया जाना <u>चाहिए और शून्य (0)</u> अंक दिए जाने चाहिए। किसी भी मूल्यांकन न किए गए भाग, शीर्षक पृष्ठ पर अंक न ले जाना, या उम्मीदवार द्वारा पाई गई कुल 15 त्रुटि से मुल्यांकन कार्य में लगे सभी कर्मियों और बोर्ड की प्रतिष्ठा को नुकसान होगा। इसलिए, सभी संबंधित पक्षों की प्रतिष्ठा बनाए रखने के लिए, यह फिर से दोहराया जाता है कि निर्देशों का सावधानीपूर्वक और विवेकपूर्ण तरीके से पालन किया जाए। परीक्षकों को वास्तविक मूल्यांकन शुरू करने से पहले "स्पॉट मूल्यांकन के लिए दिशानिर्देश" में दिए गए दिशानिर्देशों से परिचित होना चाहिए। प्रत्येक परीक्षक यह भी सुनिश्चित करेगा कि सभी उत्तरों का मूल्यांकन किया गया है, अंकों को शीर्षक

पृष्ठ पर ले जाया गया है, सही ढंग से योग किया गया है और अंकों और शब्दों में लिखा गया है। उम्मीदवार निर्धारित प्रसंस्करण शुल्क का भुगतान करके अनुरोध पर उत्तर पुस्तिका की फोटोकॉपी प्राप्त करने के हकदार हैं। सभी परीक्षकों/अतिरिक्त प्रधान परीक्षकों/प्रधान परीक्षकों को एक बार फिर याद दिलाया जाता है कि उन्हें यह सुनिश्चित करना होगा कि मूल्यांकन अंकन योजना में दिए गए प्रत्येक

उत्तर के लिए मूल्य बिंदुओं के अनुसार सख्ती से किया जाए।

## माध्यमिक विद्यालय परीक्षा, 2025 अंकन योजना

## कक्षा: x विज्ञान (विषय कोड-086)

खण्ड क

[ पेपर कोड: SET 31/2/1]

अपेक्षित उत्तर/मूल्य अंक

प्र.

सं

(ख) विद्दयुत अपघटनी परिष्करण

Get More Learning Materials Here:

(ख) (i) आण्विक द्रव्यमान में वृद्धि होने पर गलनांक में भी वृद्धि होगी।

(क) (1) और (4)

22

अधिकतम अंव	<b>ह्य 80</b>
------------	---------------

अंक

1

1

1/2

mww.studentbro.in

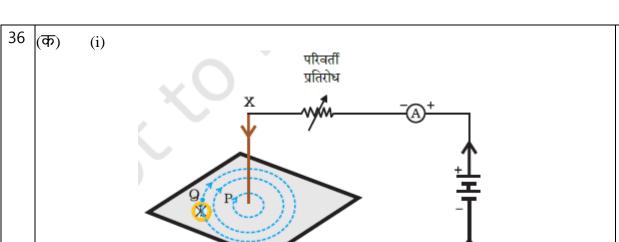
कुल

अंक

(D) / CH ₄ + 2O ₂ → CO ₂ + 2H ₂ O +उर्जा	1	1
(C) / सोडियम	1	1
(C)/ 7·0 社 7·8	1	1
(B) / एलुमिनियम को जब आयरन (III) ऑक्साइड के साथ गर्म किया जाता है, तो गलित आयरन	1	1
	1	1
	1	1
	1	1
	1	1
	1	1
(C)/ अंडाशय और वृषण दोनों में	1	1
$(A) / \frac{10}{}$		
9	1	1
(B) / –20 cm	1	1
(D) /1 और 6	1	1
(B)/ 110 W	1	1
(C) / 9 Ω	1	1
	1	1
	1	1
	1	1
(C) / अभिकथन (A) सही हैं, परन्तु (R) कारण गलत है ।	1	1
	1	1
व्याख्या करता है ।		
खण्ड ख	1	
(क) विस्थापन अभिक्रिया	1/2	
	(C) / सोडियम (C) / 7-0 से 7-8 (B) / एलुमिनियम को जब आयरन (III) ऑक्साइड के साथ गर्म किया जाता है, तो गलित आयरन प्राप्त होता है । (C) / पीतल और ब्रान्ज (D) /द्वार कौशिकाओं में जल की मात्रा (B) /केशिकाएँ (C) / कोशिकाओं में जल की मात्रा में परिवर्तन (B) / पत्ती के कोरों पर विकसित कायिक कलिकाओं (C) / अंडाशय और वृषण दोनों में (A) / 10/9 (B) / -20 cm (D) /1 और 6 (B)/ 110 W (C) / 9 \Omega (C) / DDT, पालीएस्टर, कांच (B) /अभिकथन (A) और कारण(R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या नही करता है । (A) / अभिकथन (A) सही हैं, परन्तु (R) कारण गलत है । (C) / अभिकथन (A) सही हैं, परन्तु (R) कारण गलत है । (A) / अभिकथन (A) और कारण (R) दोनों सही हैं, और कारण (R), अभिकथन (A) की सही व्याख्या करता है । (A) / अभिकथन (A) सही हैं, परन्तु (R) कारण गलत है । (A) / अभिकथन (A) और कारण (R) दोनों सही हैं, और कारण (R), अभिकथन (A) की सही व्याख्या करता है ।	(C) / सोडियम 1 (C) / गोडियम 1 (C) / एस्निनियम को जब आयरन (III) ऑक्साइड के साथ गर्म किया जाता है, तो गलित आयरन 1 प्राप्त होता है । (C) / पीतल और ब्रान्ज 1 (D) /द्वार कोशिकाओं में जल की मात्रा 1 (B) / केशिकायँ 1 (C) / कोशिकाओं में जल की मात्रा 1 (B) / केशिकायँ 1 (C) / कोशिकाओं में जल की मात्रा में परिवर्तन 1 (B) / पत्ती के कोरों पर विकसित कायिक कलिकाओं 1 (C) / अंडाशय और वृषण दोनों में 1 (A) / 10/9 1 (B) / -20 cm 1 (D) /1 और 6 1 (B) / 110 W 1 (C) / 9 \( \Omega\$ 1 (C) / DDT, पालीएस्टर, कांच 1 (B) / अभिकथन (A) और कारण(R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या करता है । (A) / अभिकथन (A) और कारण (R) दोनों सही हैं, और कारण (R), अभिकथन (A) की सही व्याख्या करता है । (C) / अभिकथन (A) और कारण (R) दोनों सही हैं, और कारण (R), अभिकथन (A) की सही व्याख्या करता है । (A) / अभिकथन (A) और कारण (R) दोनों सही हैं, और कारण (R), अभिकथन (A) की सही व्याख्या करता है । (A) / अभिकथन (A) और कारण (R) दोनों सही हैं, और कारण (R), अभिकथन (A) की सही व्याख्या करता है ।

CLICK HERE (>>

	मेडुला ,	1/2	
	सेरिबैलम	1/2	
	गेनन	1,	
24	• मेंडुला — • • • • • • • • • • • • • • • • • • •	1/2	2
24	(क) (i) बीज की सुरक्षा	1/ ₂ 1/ ₂	
	(ii) बीज का खाद संग्रह करने वाला भाग/खाद्य संग्रह	1/2	
	(iii) बीज के अंकुरित होने पर जड़ में परिवर्तित होना/ भावी जड़	1/2	
	(iv) बीज के अंकुरित होने पर प्ररोह में परिवर्तित होना/ भावी प्ररोह <b>अथवा</b>		
	(ख) एक परखनली में 10 ग्राम चीनी , 100 मिलीलीटर पानी , एक चुटकी यीस्ट ग्रेन्यूल्स लें	1	
	इसे 1-2 घंटे के लिए एक गर्म स्थान पर रखें।	1	2
	<u> </u>		
25	(क) अवतल लेंस	1	
		1	
	· · · · · · · · · · · · · · · · · · ·		
	F		
	अथवा		
	(ख)		
	(i)		
	Λ		
		1	
	$F_1$ $F_2$	1	
	<del>\</del>		
	(ii) मुख्य फोकस/फोकस	1	
	(II) 13 THE WARTER WAR (III)		2
26	P = 750  W, V = 220  V		
	• केतली द्वारा उपयोग की गई धारा, $I = \frac{P}{V}$		
	V		
	= 750  W/220  V	1/2	
	= 3.4  A	/2	
	• नहीं, इस केतली का उपयोग नहीं किया जा सकता I	1/2	
	<ul> <li>केतली द्वारा उपयोग की गई विद्युत धारा का मान प्यूज रेटिंग (3A) से अधिक है।</li> </ul>	- <u>-</u>	
	इसलिए, फ्यूज पिघल जाएगा और विधुत परिपथ टूट जाएगा ।	1	2
Get	: More Learning Materials Here : 🌓 CLICK HERE ≫ 💮 www.stuc	lenthr	o.in
300	His www.seac		J


		1/2 1/2	
	• $2H_2O(1) \xrightarrow{\text{विद्वयुत धारा}} 2H_2(g) + O_2(g)$	1/2	
	(कोई और उपयुक्त उदाहरण)		
	(भग्र जार उपयुक्त उदाहरण) (ii) क्योंकि ऊर्जा (ताप) मुक्त होती है।		
	OR	1	
	(ख)  • संयोजन अभिक्रिया में दो या दो से अधिक अभिकारकों से एकल उत्पाद बनता है जबिक वियोजन अभिक्रिया में एकल अभिकारक टूटकर दो या दो से अधिक यौगिक बनाता है। इसलिए, दोनों विपरीत हैं।	1	
	<ul> <li>संयोजन अभिक्रिया</li> <li>C(s) + O₂ (g)</li></ul>	1	
	<ul> <li>• वियोजन अभिक्रिया         CaCO₃ (s)         — Heat → CaO(s) + CO₂         कैल्सियम कार्बोनेट         कैल्सियम ऑक्साइड कार्बन डाईऑक्साइड     </li> </ul>	1	
	(कोई और उपयुक्त उदाहरण )		
	(यदि भौतिक अवस्था नहीं दी गई है तो अंक न काटें जाएँ )		3
28			
	Na O		
	2, 8, 1 2, 6		
	(i)		
		1./	
	Na (ii)	1/2	
	(ii)		
	· · · · · · · · · · · · · · · · · · ·	1/2	
	• सोडियम ऑक्साइड (Na ₂ O) का निर्माण		
[		1	

	Na + $X \circ X$ $\times$	1	
	ऋणायन: O ²⁻ धनायन : Na ⁺	1/ ₂ 1/ ₂	3
29	(क) हार्मोन रासायनिक संदेशवाहक (पदार्थ) होते हैं जो शरीर के कार्यों को नियंत्रित करते हैं / हार्मोन जैव रासायनिक पदार्थ होते हैं जो शरीर के एक भाग में उत्पन्न होते हैं और शरीर के कार्य को नियंत्रित करने के लिए लिक्षित अंग या ऊतक की ओर बढ़ते हैं। (ख) उदाहरण:	1	
	यदि रुधिर में शर्करा का स्तर बढ़ जाता है, तो इसे अग्र्याशय की कोशिकाओं द्वारा संसूचित किया जाता है और इसकी अनुक्रिया में अधिक अधिक इंसुलिन स्नावित करती हैं । जब रुधिर में शर्करा का स्तर कम हो जाता है, इसे अग्र्याशय की कोशिकाओं द्वारा संसूचित किया जाता है और इंसुलिन का श्रावण कम हो जाता है। (कोई और उपयुक्त उदाहरण)	2	3
30	(क) प्रभावी लक्षण – स्वतंत्र कर्णपालि : F f अप्रभावी लक्षण – जुड़े कर्णपालि: ff.		
	이용·미역! (1억) = 생수 포르케(I. II.		
	Parents Woman - free earlobe Man - attached earlobe  (Ff) (ff)  Gamete - F f	1/2	
	Progeny  Ff Ff Ff  Ff  attached earlobe	1/2	
	50% 50% संतित Ff: ff (यदि शब्दों में समझाया गया हो तो अंक दीजिये) (ख) जीन संयोजन:	1/2	
	पिता – 'ff' माता– 'Ff' (यदि किन्ही अन्य अक्षरों का लक्षणों को दर्शाने के लिए उपयोग किया गया है तो अंक दीजिये )	1/ ₂ 1/ ₂	3
31	/:> பக.பி. வூராலி சுரா விள	1	
Get	: More Learning Materials Here : CLICK HERE >>	lentbr	o.in

	$m = \frac{h'}{h} = \frac{v}{u}$ $= \frac{8.0 \text{cm}}{2.0 \text{cm}} = \frac{v}{-6 \text{ cm}}$	1/2	
	$ \begin{array}{rcl} 2.0 \text{cm} & -6 \text{ cm} \\ \text{or } v = -24 \text{ cm} \end{array} $	1/2	
	अतः प्रतिबिम्ब लेंस से 24 सेमी की दूरी पर है।		
	(iii) लेंस सूत्र $\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$ $\frac{1}{-24} - \frac{1}{-6} = \frac{1}{f}$ $\frac{-1}{24} + \frac{1}{6} = \frac{1}{f}$	1/2	
	$\frac{1}{8} = \frac{1}{f}$		
	f = 8 cm अतः लेंस की फोकल लंबाई 8 सेमी है	1/2	3
32	(i)		
	$\bullet \qquad \qquad$	1/2	
	श्रेणीक्रम संयोजन में , $R_s = R_1 + R_2 + R_3$	1/2	
	$= (2+3+6) \Omega = 11 \Omega$	1/2	
	(ii) <b>2</b> Ω		
	• • • • • • • • • • • • • • • • • • •		
		1/2	
	पार्श्वक्रम संयोजन में, $\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$	1/2	
	$=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}$		
	$=\frac{3+2+1}{6}$		
	$R_p = 1.0 \Omega$	1/2	3
33	<ul> <li>ओजोन (O3) पृथ्वी की सतह को पराबैंगनी विकिरण (UV) से सुरक्षा प्रदान करती है, जो जीवों के लिए अत्यंत हानिकारक होती हैं (यह त्वचा का कैंसर उत्पान करती हैं) ।</li> </ul>	1	
	<ul> <li>पराबैंगनी विकिरण (UV) ऑक्सीजन् अणुओं (O2) को विघटित क्र स्वतंत्र ऑक्सीजन्</li> </ul>		
Get	: More Learning Materials Here : CLICK HERE >>	lentbr	o.in

		<b>.</b>	
	$O_2 \xrightarrow{UV} O + O$		
	$O + O_2 \rightarrow O_3$ (Ozone)		
	• क्लोरोफ्लुओरो कार्बन (CFC)/ फ्रेओंस	1	3
		·	
	खण्ड घ	1	
34	(क) (i) X - एथनोइक अम्ल	1/2	
	H-C-C OH		
	H-U-COH	1	
	/ CH₃COOH		
	(ii) 'X' का pH मान ,खनिज अम्ल की तुलना में अधिक होगा। (iii) एस्टरीकरण अभिक्रिया	1/ ₂ 1/ ₂	
	$CH_3COOH + CH_3CH_2OH \xrightarrow{Acid} CH_3 - COOCH_2CH_3 + H_2O$	1	
	(X) (किसी अन्य एल्कॉहोल के साथ अभिक्रिया)		
	(iv) 2CH $_3$ COOH + Na $_2$ CO $_3$ $\longrightarrow$ 2CH $_3$ COONa + CO $_2$ + H $_2$ O (X) सोडियम एसीटेट/सोडियम एथेनोएट	1 1/2	
	(समीकरण का संतुलन अनिवार्य नहीं है। )		
	अथवा		
	(평) (i)		
	संतृप्त हाइ्ड्रोकार्बन असंतृप्त हाइ्ड्रोकार्बन		
	यौगिक जिनमें सभी कार्बन परमाणुओं के बीच एकल सहसंयोजी आबंध होते हैं। / वे यौगिक जिनका सामान्य सूत्र CnH2n+2 होता है। (and CnH2n-2) होता है।	1	
	उदाहरण - प्रोपेन  H H H	1	
	/ CH₃CH2CH3 प्रोपेन कोई अन्य) प्रोपाइन H – C ≡ C – C – H		
Get	t More Learning Materials Here :   CLICK HERE (>>)   R www.stu	dentbr	o.in

<ul> <li>पैलेडियम अथवानिकैलजैसे उत्प्रेरकों की उपस्थितिमें असंतृप् हाइड्रोकार्बन हाइड्रोजन जोड़कर संतृप् हाइड्रोकार्बन देते हैं। /</li> </ul>		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	
(कोई अन्य) • इसका उपयोग वनस्पति तेलों के हाइड्रोजनीकरण में होता है ।	1	
(iii) बुटीन	1/2	
H H H H H H H H H H H H H H H H H H H	1/2	5
(क) (i) घास खाने वाले शाकाहारी पशुओं (शाकाहारी) को सेलुलोज पचाने के लिए लंबी क्षुद्रांत्र की आवश्यकता होती है। मांस का पाचन सरल होता है। अतः मांस खाने वाले पशुओं (मांसाहारी) की क्षुद्रांत्र छोटी होती है।	2	
(ii) अग्र्याशय की भूमिका:- अग्र्याशय अग्र्याशयिक रस का स्नावण करता है जिसमे प्रोटीन के पाचन के लिए ट्रिप्सिन एंजाइम होता है तथा इमल्सीकृत वसा का पाचन करने के लिए लाइपेज	1	
एंजाइम होता है । पित्तरस की भूमिका – पित्तरस वसा का इमल्सीकरण करता है तथा क्षुद्रांत्र में अग्न्याशयिक एंजाइमों की क्रिया के लिए क्षारीय माध्यम बनाता है ।	1	
(iii) क्षुद्रांत्र के आतंरिक आस्तर पर अनेक अंगुली जैसे प्रवर्ध होते हैं, जिन्हें दीर्घरोम कहते हैं। ये अवशोषण का सतही क्षेत्रफल बढ़ा देते हैं। दीर्घरोम में रुधिर वाहिकाओं की बहुतायत होती है, जे भोजन को अवशोषित करके शरीर की प्रत्येक कोशिका तक पंहुचाते हैं।  अथवा	में गो वि	
(ख) (i) उपास्थि वलय यह सुनिश्चित करता है की वायु मार्ग निपतित न हो । (ii)	1	
पसलियाँ ऊपर उठती हैं → डायाफ्राम चपता हो जाता है → वक्षगुहिका बड़ी हो जाती है → वायु (फुफ्फुस( कुपिकाओं) के अन्दर चूस ली जाती हैं और हम शवास अन्दर ले लेते हैं	2	
(iii) अवायवीय श्वसन (हमारी मांसपेशियों में ऑक्सीजन का अभाव) में, पायरुवेट लैक्टिक अम्ल परिवर्तित हो जाता है । मांसपेशियों में लैक्टिक अम्ल का संचय क्रैम्प का कारण बनता है।	中 2	
Get More Learning Materials Here : CLICK HERE WWW.st	udentbr	o.in



 $1\frac{1}{2}$ 

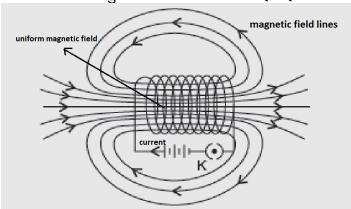
(ii) दक्षिण-हस्त अंगुष्ठ नियम नियम का कथन – कल्पना कीजिए की आप अपने दाहिने हाथ में विद्दयुत धारावाही चालक को इस प्रकार पकडे हुए हैं कि आपका अंगूठा विद्दयुत धारा की दिशा की ओर संकेत करता है , तो आपकी अंगुलियाँ चालक के चारों ओर चुम्बकीय क्षेत्र की क्षेत्र रेखाओं की दिशा में लिपटी होंगी।

1/2

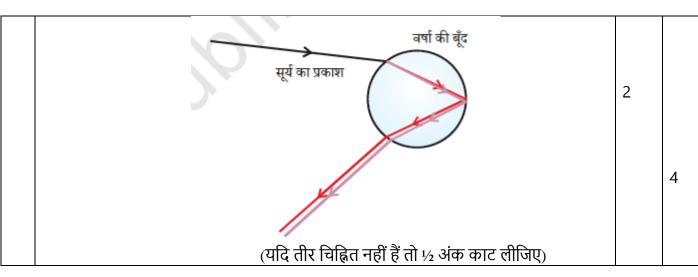
1

(iii) फ्लेमिंग के वामहस्त (बायाँ हाथ) नियम के अनुसार, अपने बाएँ हाथ की तर्जनी, मध्यमा तथा अँगूठे को इस प्रकार फैलाइए किये तीनों एक-दूसरे के परस्पर लंबवत हों। यदि तर्जनी चुंबकीय क्षेत्र की दिशा और मध्यमा

1


चालक में प्रवाहित विद्युत धारा की दिशा की ओर संकेत करती है तो अँगूठा चालक की गति की दिशा अथवा चालक पर आरोपित बल की दिशा की ओर संकेत करेगा।

1


• चुम्बकीय क्षेत्र से बाहर/ऊपर की ओर ।

अथवा

(ख) (i) पास पास लिपटे विद्दयुतरोधी ताम्बे के तार की बेलन की आकृति की अनेक फेरों वाली कुंडली को परिनालिका कहते हैं।



	(ii) किसी चुम्बकीय पदार्थ ,जैसे नर्म लोहे ,को विद्दयुत धारा प्रवाहित परिनालिका के भीतर रख	1				
	कर ।		5			
	ਗੁ <b>ਾ</b> ਤ ਤਂ					
37	(क) P – pH 0 से 4 के बीच में	1/2				
	Q – pH 12 से 14 के बीच में	1/2				
	(ख) (i) सोडियम हाइड्रोक्साइड को मिलाने पर (अथवा कोई अन्य क्षार)	1/2				
	(ii) हाइड्रोक्लोरिक अम्ल को मिलाने पर (अंथवा कोई अन्य खनिज या प्रबल अम्ल)	1/2				
	···					
	(i) • हाइड्रोनियम आयन (H3O+/H+) की सांद्रता बढ़ जायेगी ।	1				
	• पीला/ओरेंज रंग लाल/गुलाबी रंग में बदल जाएगा ।	1				
	अथवा					
	(ii) • कम pH/ 1 और 3 के बीच में	1				
	• एंटासिड/मिल्क ऑफ़ मैग्नीशिया/सोडियम हाइड्रोजन कार्बोनेट के उपयोग द्वारा	1/2				
	• मैग्नीशियम हाइड्रोक्साइड /Mg(OH)2	1/2	4			
38	क मन्नारियम हाइड्राक्साइड /Mg(OH)2 (क) अंडवाहिका(फेलोपियन ट्यूब)	1	-			
30	(ख)    गर्भाशय की आतंरिक पर्त मोटी हो जाती है तथा भ्रूण के पोषण हेतु रुधिर प्रवाह भी	1				
	बढ जाता है।	'				
	(ग) (i) गर्भाशय की पर्त धीरे धीरे टूट कर योनी मार्ग से अनिषेचित अंडकोशिका के साथ	2				
	रुधिर एवं म्यूकस के रूप में निष्कासित होती है ।					
	अथवा					
	(ii) विशेष ऊतक की सहायता से ,जिसे प्लेसेंटा कहा जाता है और जो गर्भाशय की भित्ति					
	में धंसी होती है, । यह माँ से भ्रूण को ऑक्सीजन, भोजन का स्थानांतरण करता है।	2				
			4			
39	(क) प्रकाश का विक्षेपण (क) प्रकाश के विश्वन क्या फिर्म के माध्यम से मन्त्र ने समय आपनित किया के स्माध्य	1				
	(ख) प्रकाश के विभिन्न वर्ण प्रिज्म के माध्यम से गुजरते समय आपतित किरण के सापेक्ष विभिन्न कोणों पर मुड़ते हैं।	ļ				
	(ग) (i) दो सर्व सम प्रिज्मों को एक-दूसरे के सापेक्ष उल्टी स्थिति में रखकर। जब प्रिज्म A					
	द्वारा उत्पन्न स्पेक्ट्रम को प्रिज्म B के माध्यम से गुजरता है, तो प्रिज्म B के बाहर से एक स्वेत					
	प्रकाश का किरण पुंज निर्गत होता है ।					
	परदा					
	A P ₂					
	A	2				
	श्वेत प्रकाश <b>R R</b> श्वेत प्रकाश					
	v v					
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
	\ P ₁ A					
	( यदि नामांकित किरण दिया गया है, तो पुरे अंक दीजिए)					
	अथवा					
Get	Get More Learning Materials Here : CLICK HERE Www.studentbro.in					
Wig www.stadentalo.iii						



	अंकन योजना
	पूरी तरह से गोपनीय
	(केवल आंतरिक और प्रतिबंधित उपयोग के लिए)
	माध्यमिक विद्यालय परीक्षा, 2025
	विषय का नामः विज्ञान विषय कोडः 086 पेपर कोडः 31/2/2
	सामान्य निर्देश: -
1	आप जानते हैं कि अभ्यर्थियों के वास्तविक एवं सही मूल्यांकन में मूल्यांकन सबसे महत्वपूर्ण प्रक्रिया है।
	मूल्यांकन में एक छोटी सी गुलती गंभीर समस्याओं का कारण बन सकती है जो उम्मीदवारों के भविष्य,
	शिक्षा प्रणाली और शिक्ष्ण पेशे को प्रभावित कर सकती है। ग्लित्यों से बचने के लिए आप्से अनुरोध है
	कि मूल्यांकन शुरू करने से पहले स्पॉट मूल्यांकन दिशानिर्देशों को ध्यान से पढ़ें और समझें।
2	"मूल्यांकन नीति एक गोपनीय नीति है क्योंकि यह आयोजित परीक्षाओं, किए गए मूल्यांकन और कई
	अन्य पहलुओं की गोपनीयता से संबंधित है। इसके किसी भी तरह से जनता के बीच लीक होने से परीक्षा प्रणाली पटरी से उतर सकती है और लाखों उम्मीदवारों के जीवन और भविष्य पर असर पड़ सकता है।
	इस नीति/दस्तावेज़ को किसी के साथ साझा करना, किसी पत्रिका में प्रकाशित करना और समाचार
	पत्र/वेबसाइट आदि में छापना बोर्ड और आईपीसी के विभिन्न नियमों के तहत कार्रवाई को आमंत्रित
	कर सकता है।
3	मूल्यांकन अंकन योजना में दिए गए निर्देशों के अनुसार किया जाना है। इसे अपनी व्याख्या या किसी
	अन्य विचार के अनुसार नहीं किया जाना चाहिए। अंकन योजना का कड़ाई से पालन किया जाना
	चाहिए। हालाँकि, मूल्यांकन करते समय, जो उत्तर नवीनतम जानकारी या ज्ञान पर आधारित हैं और/या
	नवीन हैं, अन्यथा उनकी सत्यता का मूल्यांकन किया जा सकता है और उन्हें उचित अंक दिए जा सकते
	हैं। कक्षा-X में, दो योग्यता-आधारित प्रश्नों का मूल्यांकन् करते समय, कृपया दिए गए उत्तर को समझने
	का प्रयास करें और भले ही उत्तर अंकन योजना से न हो, लेकिन उम्मीदवार द्वारा सही योग्यता गिनाई
	गई हो, उचित अंक दिए जाने चाहिए।
4	अंकन योजना में उत्तरों के लिए केवल सुझाए गए मूल्य बिंदु हैं। ये केवल दिशानिर्देशों की प्रकृति में हैं
	और संपूर्ण उत्तर का गठन नहीं करते हैं। विद्यार्थियों की अपनी अभिव्यक्ति हो सकती है और यदि
5	अभिव्यक्ति सही है तो उसके अनुसार उचित अंक दिये जाने चाहिए। प्रधान-परीक्षक को पहले दिन प्रत्येक मृल्यांकनकर्ता द्वारा मूल्यांकन की गई पहली पांच उत्तर
5	पुस्तिकाओं का अध्ययन करना होगा, ताकि यह सुनिश्चित हो सके कि मूल्यांकन अंकन योजना में दिए
	गए निर्देशों के अनुसार किया गया है। यदि कोई भिन्नता हो तो विचार-विमर्श के बाद उसे शून्य किया
	जाए। मूल्यांकन के लिए शेष उत्तर पुस्तिकाएं यह सुनिश्चित करने के बाद ही दी जाएंगी कि व्यक्तिगत
	मूल्यांकनकर्ताओं के अंकन में कोई महत्वपूर्ण भिन्नता नहीं है।
6	जहां भी उत्तर सही होगा, मूल्यांकनकर्ता (√) अंकित करेंगे। गलत उत्तर के लिए क्रॉस 'X' अंकित किया
	जाए। मूल्यांकनकर्ता मूल्यांकन करते समय सही (🗸) नहीं लगाएंगे जिससे यह आभास होगा कि उत्तर
	सही है और कोई अंक नहीं दिया गया है। यह सबसे आम गलती है जो मूल्यांकनकर्ता कर रहे हैं।
7	यदि किसी प्रश्न के कुछ भाग हैं, तो कृपया प्रत्येक भाग के लिए दाहिनी ओर अंक दें। फिर प्रश्न के
	विभिन्न भागों के लिए दिए गए अंकों को जोड़ दिया जाना चाहिए और बाएं हाथ के हाशिये में लिखा जाना
	चाहिए और घेरा बनाया जाना चाहिए। इसका सख्ती से पालन किया जा सके.
8	यदि किसी प्रश्न में कोई भाग नहीं है, तो बाएं हाथ के हाशिए में अंक दिए जाने चाहिए और घेरा लगाना
	चाहिए। इसका भी सख्ती से पालन किया जा सकता है.
9	यदि किसी छात्र ने एक अतिरिक्त प्रश्न का प्रयास किया है, तो अधिक अंकों के योग्य प्रश्न का उत्तर
10	बरकरार रखा जाना चाहिए और दूसरे उत्तर को "अतिरिक्त प्रश्न" नोट के साथ काट दिया जाना चाहिए।
10	किसी त्रुटि के संचयी प्रभाव के लिए कोई अंक नहीं काटा जाएगा। इसे केवल एक बार दंडित किया जाना चाहिए।
11	बिंदु का एक पूर्ण स्कैन 80 (उदाहरण 0 से 80/70/60/50/40/30 अंक जैसा कि प्रश्न पत्र में दिया गया
' '	है) का उपयोग करना होगा। यदि यह उपयुक्त है तो कृपया आर्डिनरी में प्रवेश न लें।
12	प्रत्येक परीक्षक को आवश्यक रूप से पूरे कार्य समय अर्थात प्रतिदिन ८ घंटे तक मूल्यांकन कार्य करना
	होगा तथा मुख्य तिषयों में प्रतिदिन २० उत्तर प्रस्तिकाओं तथा अन्य तिषयों में प्रतिदिन २५ उत्तर

• किसी उत्तर पर दिए गए अंकों का गलत योग। • उत्तर पुस्तिका के अंदर के पन्नों से मुख्य पृष्ठ पर अंकों का गलत स्थानांतरण। शीर्षक पृष्ठ पर गलत प्रश्नवार योग। • उत्तर पुस्तिका में उत्तर या उसके किसी भाग को बिना मुल्यांकन किये छोड़ देना। • शीर्षक पृष्ठ पर दो कॉलमों के अंकों का गलत योग। • गलत योग। शब्दों और अंकों में अंकित चिह्न मेल नहीं खाते/समान नहीं। • उत्तर पुस्तिका से ऑनलाइन पुरस्कार सूची में अंकों का गलत स्थानांतरण। • उत्तरों को सही के रूप में चिह्नित किया गया, लेकिन अंक नहीं दिए गए। (सुनिश्चित करें कि सही टिक मार्क सही और स्पष्ट रूप से इंगित किया गया है। यह केवल एक पंक्ति होनी चाहिए। गलत उत्तर के लिए एक्स के साथ भी ऐसा ही है।) • उत्तर के आधे या कुछ भाग को सही और शेष को गलत चिह्नित किया गया, लेकिन कोई अंक नहीं दिया गया। उत्तर पुस्तिकाओं का मूल्यांकन करते समय यदि उत्तर पूरी तरह से गलत पाया जाता है, तो इसे क्रॉस (X) के रूप में चिह्नित किया जाना चाहिए और शून्य (0) अंक दिए जाने चाहिए। किसी भी मुल्यांकन न किए गए भाग, शीर्षक पृष्ठ पर अंक न ले जाना, या उम्मीदवार द्वारा पाई गई कुल त्रुटि से मुल्यांकन कार्य में लगे सभी कर्मियों और बोर्ड की प्रतिष्ठा को नुकसान होगा। इसलिए, सभी संबंधित पक्षों की प्रतिष्ठा बनाए रखने के लिए, यह फिर से दोहराया जाता है कि निर्देशों का सावधानीपूर्वक और विवेकपूर्ण तरीके से पालन किया जाए। परीक्षकों को वास्तविक मुल्यांकन शुरू करने से पहले "स्पॉट मुल्यांकन के लिए दिशानिर्देश" में दिए 16 गए दिशानिर्देशों से परिचित होना चाहिए। प्रत्येक परीक्षक यह भी सुनिश्चित करेगा कि सभी उत्तरों का मूल्यांकन किया गया है, अंकों को शीर्षक 17 पृष्ठ पर ले जाया गया है, सही ढंग से योग किया गया है और अंकों और शब्दों में लिखा गया है। उम्मीदवार निर्धारित प्रसंस्करण शुल्क का भुगतान करके अनुरोध पर उत्तर पुस्तिका की फोटोकॉपी प्राप्त करने के हकदार हैं। सभी परीक्षकों/अतिरिक्त प्रधान परीक्षकों/प्रधान परीक्षकों को एक बार फिर याद दिलाया जाता है कि उन्हें यह सुनिश्चित करना होगा कि मूल्यांकन अंकन योजना में दिए गए प्रत्येक उत्तर के लिए मूल्य बिंदुओं के अनुसार सख्ती से किया जाए।

## माध्यमिक विद्यालय परीक्षा, 2025 अंकन योजना

## कक्षा: x विज्ञान (विषय कोड-086)

[ पेपर कोड: SET 31/2/2]

अधिकतम अंक : 80


	अधिकतम् अकः : 80		
प्र. सं	अपेक्षित उत्तर/मूल्य अंक	अंक	कुल अंक
	खण्ड क		
1.	(C) / सोडियम	1	1
2.	(B) / एलु मनियम को जब आयरन (III) ऑक्साइड के साथ गर्म कया जाता है, तो ग लत	1	1
	आयरन प्राप्त होता है I		
3.	$(C) / Na_2ZnO_2$	1	1
4.	(C) / पीतल और ब्रान्ज	1	1
5.	$(D) / CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O + Energy$	1	1
6.	(A) / नाइट्रोजन	1	1
7.	(C)/ अंडाशय और वृषण दोनों में	1	1
8.	(B) / केशिकाएँ	1	1
9.	(C) / जनक पौधों की तुलना में, कायिक प्रवर्धन द्वारा उत्पन्न पौधों में अधिक विभिन्नताएं होती हैं ।	1	1
10.	(C) / कोशिकाओं में जल की मात्रा में परिवर्तन ।	1	1
11.	$(C)/9\Omega$	1	1
12.	$(A) / \frac{10}{9}$	1	1
13.	(A) / स्वच्छमंडल	1	1
14.	(B) रउसके संघटक धातुओं की प्रतिरोधकता से उच्च होती है ।	1	1
15.	(B) / –20 cm	1	1
16.	(C) / DDT, पालीएस्टर, कांच	1	1
17.	(A) / अभिकथन (A) और कारण (R) दोनों सही हैं, और कारण (R), अ भकथन (A) की	1	1
18.	सही व्याख्या करता है	1	1
	(C) / अभिकथन (A) सही हैं, परन्तु (R) कारण गलत है   ut R is false.		
19.	(A) $/$ अभिकथन (A) और कारण (R) दोनों सही हैं, और कारण (R), अ भकथन (A) की	1	1
20	सही व्याख्या करता है ।	1	1
20.	(A) / अभिकथन (A) और कारण (R) दोनों सही हैं, और कारण (R), अ भकथन (A) की	1	1
	सही व्याख्या करता है ।		
	खण्ड <b>ख</b>	T	
21.	(क) $6 \text{ CO}_2 + 12\text{H}_2\text{O} \xrightarrow{\text{सूर्य का प्रकाश, क्लोरोफिल}} \text{C}_6 \text{ H}_{12}\text{O}_6 + 6\text{O}_2 + 6\text{H}_2\text{O}$	1	
	(☑) $2\text{Pb}(\text{NO}_3)_2 \xrightarrow{\text{SMI}} 2\text{PbO} + 4\text{NO}_2 + \text{O}_2$		
		1	2
22.	(क) (1) और (4)	1	

		1	
23.	(a) <b>जड़</b> – गति: अधोगामी वृद्धि ; उद्दीपन: गुरुत्व	1/2 1/2	
	्राचाराक <i>गुरुव</i> ा वर्तन ्यतीपन् प्रकार	72	
	धनात्मक <i>गुरुत्ा नुर्तन</i> ः उद्दीपन: प्रकाश		
	(ख) <b>प्ररोह</b> – गति: उपरिगामी वृद्धि ;उद्दीपन: गुरुत्व	1/2	
	/ ऋणात्मक प्र काशानुित्शन     ; उद्दीपन: प्रकाश	1/2	
			2
24.	(क) (i) बीज की सुरक्षा	1/2	
		1/2	
	(ii) बीज का खाद संग्रह करने वाला भाग/खाद्य संग्रह	1./	
	(iii) बीज के अंकुरित होने पर जड़ में परिवर्तित होना/ भावी जड़	1/2 1/2	
	(iv) बीज के अंकुरित होने पर प्ररोह में परिवर्तित होना/ भावी प्ररोह	/2	
	अथवा		
	(f u) एक परखनली में $10$ ग्राम चीनी , $100$ मिलीलीटर पानी , एक चुटकी यीस्ट ग्रेन्यूल्स ले		
	इसे 1-2 घंटे के लिए एक गर्म स्थान पर रखें।	2	
			2
25.	(क) अवतल लेंस	1	
25.		1	
	F	1	
	अथवा		
	(ख)		
	(i)		
	$F_1$ $F_2$	1	
	(ii) मुख्य फोकस/फोकस		
	(॥) નુષ્ક્ર યગવગ્ત્ત/યગવગ્ત	1	2
26.	D 5 LW V 200V		_
	P = 5  kW, V = 200V		
	विद्दयुत साधित्र द्वारा  उपयोग की  गई  धारा $= \mathrm{I} = rac{P}{V}$		



दिया गया विद्दयुत प्रयूज उपयोग में नहीं लाया जा सकता है	1/2	
क्योंकि विद्दयुत साधित्र दी गई फ्यूज की रेटिंग से अधिक विद्दयुत धारा का उपयोग कर रहा है, इसलिए फ्यूज पिघल जाएगा।	1	2
खण्ड ग		•
27. (क) (i) एकल अभिकारक (पदार्थ) टूटकर दो या अधिक उत्पाद बनाता है।	1/2	
• $CaCO_3(s) \xrightarrow{\Im NH} CaO(s) + CO_2(g)$	1/2	
	1/2	
• $2H_2O(l) \xrightarrow{\text{विद्युत धारा}} 2H_2(g) + O_2(g)$	1/2	
(कोई और उपयुक्त उदाहरण) (ii) क्योंकि ऊर्जा (ताप) मुक्त होती है।	1	
अथवा		
<ul> <li>(ख)</li> <li>संयोजन अभिक्रिया में दो या दो से अधिक अभिकारकों से एकल उत्पाद बनता है जबिक वियोजन अभिक्रिया में एकल अभिकारक टूटकर दो या दो से अधिक यौगिक बनाता है। इसलिए, दोनों विपरीत हैं।</li> </ul>	1	
• संयोजन अभिक्रिया $C(s) + O_2(g) \longrightarrow CO_2(g) + ऊष्मा$ कार्बन ऑक्सीजन कार्बन डाईऑक्साइड	1	
• वियोजन अभिक्रिया	1	
(कोई और उपयुक्त उदाहरण) (यदि भौतिक अवस्था  नहीं दी गई है तो अंक न काटें जाएँ )		3
28. (क) एलुमिनियम (AI) और आयरन (Fe)	1/2+	
	1/2	
(ख)	1	
$\bullet  2Al + 3H_2O(g) \longrightarrow Al_2O_3 + 3H_2$		
$\bullet  3\text{Fe} + 4\text{H}_2\text{O(g)} \longrightarrow \text{Fe}_3\text{O}_4 + 4\text{H}_2$	1	3





((यदि किन्ही अन्य अक्ष दीजिये )	ारों का लक्षणों को दर्शाने के लिए उपयोग किया गया है तो अंक		3
31. (i) $u = -20$ cm. $v = -$	-10 cm		
$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$ $\frac{1}{-10} - \frac{1}{-20} = \frac{1}{f}$		1/2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1/2	
-10 - 20 = f		, -	
$\frac{-1}{10} + \frac{1}{20} = \frac{1}{f}$			
$\frac{-2+1}{20} = \frac{1}{f}$			
$\frac{20}{-1} = \frac{1}{f}$			
		1	
f = -20  cm			
		1/2	
$\int_{1}^{(11)} \Gamma - \frac{1}{f(m)}$			
(ii) $P = \frac{1}{f(m)}$ = $\frac{1}{-0.2} = -5D$		1/2	3
32. $R = 35 \Omega$			3
	_ 4		
व्यास (2r) = 0·2 mm	$= 2 \times 10^{-4} \text{ m}  \therefore r = 10^{-4} \text{ m}$		
तार की लम्बाई = 1 m			
$R = \rho \frac{l}{A}$		1/2	
* A			
अनुप्रस्थ काट का क्षेत्रफल			
प्रतिशेशकता R A	$=\frac{35 \times \frac{22}{7} \times (10^{-4})^2}{1}$	1/2	
$\rho = \frac{R}{l}$	=	, -	
	$= 110 \times 10^{-8} \Omega \text{m}$	1	
	- 110 ^ 10 <b>22</b> III	1	
	0	1/2	
तार की प्रतिरोधकता प	रिवर्तित नहीं होगी	72	
क्योंकि यह पदार्थ की व	ह विशेषता है जो तार के आयामों पर निर्भर नहीं करती।	1/2	3
· · ·	पृथ्वी की सतह को पराबैंगनी विकिरण (UV) से सुरक्षा प्रदान करती है,		
जो जीवों के लि	ाए अत्यंत हानिकारक होती हैं (यह त्वचा का कैंसर उत्पान करती हैं)।	1	
• पराबैंगनी विकिर	रण (UV) ऑक्सीजन अणुओं ( $\mathrm{O}_2$ ) को विघटित कर स्वतंत्र ऑक्सीजन		
	गति हैं । ऑक्सीजन के ये स्वतंत्र परमाणु संयुक्त होकर ओजोन बनाते हैं ।	1	
		1	
	$O_2 \xrightarrow{UV} O + O$		
	0+0>0-		



34. (क) (i) X - एथनोइक अम्ल

/ CH₃COOH

(ii) 'X' का pH मान ,खनिज अम्ल की तुलना में अधिक होगा।

(iii) एस्टरीकरण अभिक्रिया

$$\begin{array}{c} \text{CH}_3\text{COOH} + \text{CH}_3\text{CH}_2\text{OH} & \xrightarrow{\text{Acid}} & \text{CH}_3 - \text{COOCH}_2\text{CH}_3 + \text{H}_2\text{O} \\ \text{(X)} \end{array}$$

(किसी अन्य एल्कॉहोल के साथ अभिक्रिया)

1/2

1

1/2

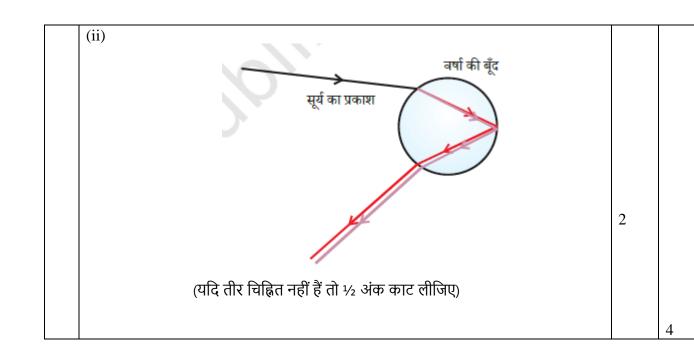
1/2

1

(iv) 
$$2CH_3COOH + Na_2CO_3 \longrightarrow 2CH_3COONa + CO_2 + H_2O$$
  
(X) सोडियम एसीटेट/सोडियम एथेनोएट  $1_{1/2}$ 

(समीकरण का संतुलन अनिवार्य नहीं है।)

अथवा


(i) (i)

संतृप्त हाइड्रोकार्बन	असंतृप्त हाइड्रोकार्बन	
यौगिक जिनमें सभी कार्बन परमाणुओं के बीच एकल सहसंयोजी आबंध होते हैं। / वे यौगिक जिनका सामान्य सूत्र CnH2n+2 होता है	यौगिक जिनमें किसी कार्बन - कार्बन के के बीच द्वि या त्रि सहसंयोजी आबंध होते हैं। / वे यौगिक जिनका सामान्य सूत्र CnH2n और CnH2n-2 होता है।	1
उदाहरण - प्रोपेन	उदाहरण – प्रोपीन/प्रोपाइन H   H – C = C – C – H 	1
प्रोपेन (कोई अन्य)	H   प्रोपाइन H – C ≡ C– C – H   H (कोई अन्य)	

(ii) पैलेडियम अथवानिकैलजैसे उत्प्रेरकों की उपस्थितिमें असंतृप् हाइड़ोकार्बन हाइड़ोजन जोड़कर संतुप् हाइड़ोकार्बन देते हैं। /  $\frac{\mathbf{H}}{\mathbf{H}} > \mathbf{C} = \mathbf{C} < \frac{\mathbf{H}}{\mathbf{H}} \qquad \frac{\mathbf{H}_2}{\mathbf{N} \mathbf{i} / \mathsf{Pd}} \rightarrow \mathbf{H} - \frac{\mathbf{I}}{\mathbf{C}} - \frac{\mathbf{I}}{\mathbf{C}} - \mathbf{H}$ 1 (कोई अन्य) 1 इसका उपयोग वनस्पति तेलों के हाइडोजनीकरण में होता है । (iii) बुटीन 1/2 / н-с-с=с-с-н 1/2 5 35. (क)(i) परिवर्ती प्रतिरोध  $1\frac{1}{2}$ K (ii) द क्षण-हस्त अंग्ष्ठ नियम 1/2 नियम का कथन – कल्पना कीजिए की आप अपने दाहिने हाथ में विद्युत धारावाही चालक को 1 इस प्रकार पकड़े हुए हैं कि आपका अंगूठा विद्युत धारा की दिशा की ओर संकेत करता है, तो आपकी अंगुलियाँ चालक के चारों ओर चुम्बकीय क्षेत्र की क्षेत्र रेखाओं की दिशा में लिपटी होंगी। फ्लेमिंग के वामहस्त (बायाँ हाथ) नियम के अनुसार, अपने बाएँ हाथ की तर्जनी, मध्यमा तथा अँगूठे को इस प्रकार फैलाइए किये तीनों एक-दूसरे के परस्पर लंबवत हों। यदि तर्जनी चुंबकीय क्षेत्र की

चालक में प्रवाहित विदुयुत धारा की दिशा की ओर संकेत करती है तो अँगूठा चालक की गति की दिशा अथवा चालक पर आरोपित बल की दिशा की ओर संकेत करेगा। चुम्बकीय क्षेत्र से बाहर/ऊपर की ओर । 1 अथवा (i) पास पास लिपटे विद्युतरोधी ताम्बे के तार की बेलन की आकृति की अनेक 1 फेरों वाली कुंडली को परिनालिका कहते हैं। magnetic field lines uniform magnetic field  $1\frac{1}{2}$ अंक (i), (ii) और (iii)  $\frac{1}{2} \times 3$ 5 (ii) किसी चुम्बकीय पदार्थ, जैसे नर्म लोहे, को विद्वयूत धारा प्रवाहित परिनालिका के भीतर रख कर । 1 36. (क) (i) घास खाने वाले शाकाहारी पशुओं (शाकाहारी) को सेलुलोज पचाने के लिए लंबी क्षुद्रांत्र की आवश्यकता होती है। मांस का पाँचन सरल होता है । अतः मांस खाने वाले पश्ओं (मांसाहारी) की 2 क्षद्रांत्र छोटी होती है। (ii) अग्र्याशय की भूमिका:- अग्र्याशय अग्र्याशयिक रस का स्नावण करता है जिसमे प्रोटीन के पाचन के लिए ट्रिप्सिन एंजाइम होता है तथा इमल्सीकृत वसा का पाचन करने के लिए लाइपेज 1 एंजाइम होता है। पित्तरस की भूमिका – पित्तरस वसा का इमल्सीकरण करता है तथा क्षुद्रांत्र में अग्न्याशियक एंजाइमों 1 की क्रिया के लिए क्षारीय माध्यम बनाता है | (iii) क्षुद्रांत्र के आतंरिक आस्तर पर अनेक अंगुली जैसे प्रवर्ध होते हैं, जिन्हें दीर्घरोम कहते हैं | ये अवशोषण का सतही क्षेत्रफल बढ़ा देते हैं । दीर्घरोम में रुधिर वाहिकाओं की बहुतायत होती है,जो भोजन को अवशोषित करके शरीर की प्रत्येक कोशिका तक पंहचाते हैं । (ख) (i) उपास्थि वलय यह सुनिश्चित करता है की वायु मार्ग निपतित न हो । 1 🚻 प्रमुलियाँ उरूपर उरुती हैं 🗕 दायाफाम चपता हो जाता है 🗕 तक्षगहिका बदी हो जाती है

		1	1
	(iii) अवायवीय श्वसन (हमारी मांसपेशियों में ऑक्सीजन का अभाव) में, पायरुवेट लैक्टिक अम्ल में परिवर्तित हो जाता है । मांसपेशियों में लैक्टिक अम्ल का संचय क्रैम्प का	2	
	कारण बनता है।		5
	खण्ड ड		
37.	(क) P – pH 0 से 4 के बीच में	1/2	
	Q – pH 12 से 14 के बीच में	1/2	
	(ख) (i) सोडियम हाइड्रोक्साइड को मिलाने पर (अथवा कोई अन्य क्षार)	1/2	
	(ii) हाइड्रोक्लोरिक अम्ल को मिलाने पर (अथवा कोई अन्य खनिज या प्रबल अम्ल)	1/2	
	(ग)		
	(i) • हाइड्रोनियम आयन (H ₃ O+/H+) की सांद्रता बढ़ जायेगी ।	1	
	<ul> <li>पीला/ओरेंज रंग लाल/गुलाबी रंग में बदल जाएगा  </li> </ul>	1	
	अथवा		
	(i) • कम pH/ 1 और 3 के बीच में	1	
	• एंटासिड/मिल्क ऑफ़ मैग्नीशिया/सोडियम हाइड्रोजन कार्बोनेट के उपयोग द्वारा	1/2	
	• मैग्नीशियम हाइड्रोक्साइड /Mg(OH)2	1/2	4
38.	(क) अंडवाहिका(फेलोपियन ट्यूब) (ख) गर्भाशय की आतंरिक पर्त मोटी हो जाती है तथा भ्रूण के पोषण हेतु रुधिर प्रवाह भी बढ़ जाता है ।	1 1	
	(ग) (i) गर्भाशय की पर्त धीरे धीरे टूट कर योनी मार्ग से अनिषेचित अंडकोशिका के साथ रुधिर एवं म्यूकस के रूप में निष्कासित होती है	2	
	अथवा		
	(ii) विशेष ऊतक की सहायता से ,जिसे प्लेसेंटा कहा जाता है और जो गर्भाशय की भित्ति में धंसी		
	होती है, । यह माँ से भ्रूण को ऑक्सीजन, भोजन का स्थानांतरण करता है।	2	4
39.	(क) प्रकाश का विक्षेपण (ख) प्रकाश के विभिन्न वर्ण प्रिज्म के माध्यम से गुजरते समय आपतित किरण के सापेक्ष विभिन्न कोणों पर मुड़ते हैं।	1 1	
	(ग) (i) दो सर्व सम प्रिज्मों को एक-दूसरे के सापेक्ष उल्टी स्थिति में रखकर। जब प्रिज्म A द्वारा उत्पन्न स्पेक्ट्रम को प्रिज्म B के माध्यम से गुजरता है, तो प्रिज्म B के बाहर से एक स्वेत प्रकाश का किरण पुंज निर्गत होता है ।		
	प्रवेत प्रकाश         R         R         प्रकाश	2	



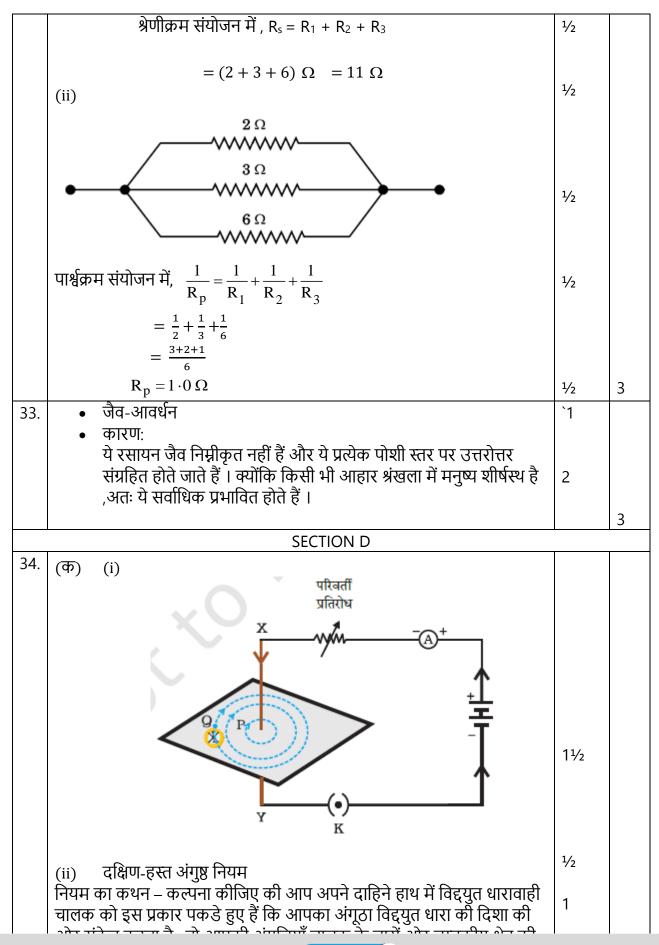
	अंकन योजना
	पूरी तरह से गोपनीय
	(केवल आंतरिक और प्रतिबंधित उपयोग के लिए)
	माध्यमिक विद्यालय परीक्षा, 2025
	विषय का नामः विज्ञान विषय कोडः 086 पेपर कोडः 31/2/3
	सामान्य निर्देश: -
1	आप जानते हैं कि अभ्यर्थियों के वास्तविक एवं सही मूल्यांकन में मूल्यांकन सबसे महत्वपूर्ण प्रक्रिया है।
-	मूल्यांकन में एक छोटी सी गलती गंभीर समस्याओं का कारण बन सकती है जो उम्मीदवारों के भविष्य,
	शिक्षा प्रणाली और शिक्षण पेशे को प्रभावित कर सकती है। गलतियों से बचने के लिए आपसे अनुरोध है
	कि मूल्यांकन शुरू करने से पहले स्पॉट मूल्यांकन दिशानिर्देशों को ध्यान से पढ़ें और समझें।
2	"मूल्यांकन नीति एक गोपनीय नीति है क्योंकि यह आयोजित परीक्षाओं, किए गए मूल्यांकन और कई
	अन्य पहलुओं की गोपनीयता से संबंधित है। इसके किसी भी तरह से जनता के बीच लीक होने से परीक्षा
	प्रणाली पटरी से उतर सकती है और लाखों उम्मीदवारों के जीवन और भविष्य पर असर पड़ सकता है।
	इस नीति/दस्तावेज़ को किसी के साथ साझा करना, किसी पत्रिका में प्रकाशित करना और समाचार
	पत्र/वेबसाइट आदि में छापना बोर्ड और आईपीसी के विभिन्न नियमों के तहत कार्रवाई को आमंत्रित
	कर सकता है।
3	मूल्यांकन अंकन योजना में दिए गए निर्देशों के अनुसार किया जाना है। इसे अपनी व्याख्या या किसी
	अन्य विचार के अनुसार नहीं किया जाना चाहिए। अंकन योजना का कड़ाई से पालन किया जाना
	चाहिए। हालाँकि, मूल्यांकन करते समय, जो उत्तर नवीनतम जानकारी या ज्ञान पर आधारित हैं और/या
	नवीन हैं, अन्यथा उनकी सत्यता का मूल्यांकन किया जा सक्ता है और उन्हें उचित अंक दिए जा सक्ते
	हैं। कक्षा-X में, दो योग्यता-आधारित प्रश्नों का मूल्यांकन् करते समय, कृपया दिए गए उत्तर को समझ्ने
	का प्रयास करें और भले ही उत्तर अंकन योजना से न हो, लेकिन उम्मीदवार द्वारा सही योग्यता गिनाई
	गई हो, उचित अंक दिए जाने चाहिए।
4	अंकन योजना में उत्तरों के लिए केवल सुझाए गए मूल्य बिंदु हैं। ये केवल दिशानिर्देशों की प्रकृति में हैं
	और संपूर्ण उत्तर का गठन नहीं करते हैं। विद्यार्थियों की अपनी अभिव्यक्ति हो सकती है और यदि
<u> </u>	अभिव्यक्ति सही है तो उसके अनुसार उचित अंक दिये जाने चाहिए।
5	प्रधान-परीक्षक को पहले दिन प्रत्येक मूल्यांकनकर्ता द्वारा मूल्यांकन की गई पहली पांच उत्तर
	पुस्तिकाओं का अध्ययन करना होगा, ताकि यह सुनिश्चित हो सके कि मूल्यांकन अंकन योजना में दिए
	गए निर्देशों के अनुसार किया गया है। यदि कोई भिन्नता हो तो विचार-विमर्श के बाद उसे शून्य किया
	जाए। मूल्यांकन के लिए शेष उत्तर पुस्तिकाएं यह सुनिश्चित करने के बाद ही दी जाएंगी कि व्यक्तिगत मूल्यांकनकर्ताओं के अंकन में कोई महत्वपूर्ण भिन्नता नहीं है।
6	जहां भी उत्तर सही होगा, मूल्यांकनकर्ता (√) अंकित करेंगे। गलत उत्तर के लिए क्रॉस 'X' अंकित किया
0	जाए। मूल्यांकनकर्ता मूल्यांकन करते समय सही (४) नहीं लगाएंगे जिससे यह आभास होगा कि उत्तर
	सही है और कोई अंक नहीं दिया गया है। यह सबसे आम गलती है जो मूल्यांकनकर्ता कर रहे हैं।
7	यदि किसी प्रश्न के कुछ भाग हैं, तो कृपया प्रत्येक भाग के लिए दाहिनी ओर अंक दें। फिर प्रश्न के
<b>'</b>	विभिन्न भागों के लिए दिए गए अंकों को जोड़ दिया जाना चाहिए और बाएं हाथ के हाशिये में लिखा जाना
	चाहिए और घेरा बनाया जाना चाहिए। इसका सख्ती से पालन किया जा सके.
8	यदि किसी प्रश्न में कोई भाग नहीं है, तो बाएं हाथ के हाशिए में अंक दिए जाने चाहिए और घेरा लगाना
	चाहिए। इसका भी सख्ती से पालन किया जा सकता है.
9	यदि किसी छात्र ने एक अतिरिक्त प्रश्न का प्रयास किया है, तो अधिक अंकों के योग्य प्रश्न का उत्तर
	बरकरार रखा जाना चाहिए और दूसरे उत्तर को "अतिरिक्त प्रश्न" नोट के साथ काट दिया जाना चाहिए।
10	किसी त्रुटि के संचयी प्रभाव के लिए कोई अंक नहीं काटा जाएगा। इसे केवल एक बार दंडित किया
	जाना चाहिए।
11	बिंदु का एक पूर्ण स्कैन 80 (उदाहरण 0 से 80/70/60/50/40/30 अंक जैसा कि प्रश्न पत्र में दिया गया
' '	है) का उपयोग करना होगा। यदि यह उपयुक्त है तो कृपया आर्डिनरी में प्रवेश न लें।
12	प्रत्येक परीक्षक को आवश्यक रूप से पूरे कार्य समय अर्थात प्रतिदिन 8 घंटे तक मूल्यांकन कार्य करना
	होगा तथा प्रख्या तिषयों में पतिदिन २० त्स्तर पस्तिकाओं तथा अस्य तिषयों में पतिदिन २५ त्सर

• किसी उत्तर पर दिए गए अंकों का गलत योग। • उत्तर पुस्तिका के अंदर के पन्नों से मुख्य पृष्ठ पर अंकों का गलत स्थानांतरण। शीर्षक पृष्ठ पर गलत प्रश्नवार योग। • उत्तर पुस्तिका में उत्तर या उसके किसी भाग को बिना मुल्यांकन किये छोड़ देना। • शीर्षक पृष्ठ पर दो कॉलमों के अंकों का गलत योग। • गलत योग। शब्दों और अंकों में अंकित चिह्न मेल नहीं खाते/समान नहीं। • उत्तर पुस्तिका से ऑनलाइन पुरस्कार सूची में अंकों का गलत स्थानांतरण। • उत्तरों को सही के रूप में चिह्नित किया गया, लेकिन अंक नहीं दिए गए। (सुनिश्चित करें कि सही टिक मार्क सही और स्पष्ट रूप से इंगित किया गया है। यह केवल एक पंक्ति होनी चाहिए। गलत उत्तर के लिए एक्स के साथ भी ऐसा ही है।) • उत्तर के आधे या कुछ भाग को सही और शेष को गलत चिह्नित किया गया, लेकिन कोई अंक नहीं दिया गया। उत्तर पुस्तिकाओं का मूल्यांकन करते समय यदि उत्तर पूरी तरह से गलत पाया जाता है, तो इसे क्रॉस (X) के रूप में चिह्नित किया जाना चाहिए और शून्य (0) अंक दिए जाने चाहिए। किसी भी मुल्यांकन न किए गए भाग, शीर्षक पृष्ठ पर अंक न ले जाना, या उम्मीदवार द्वारा पाई गई कुल त्रुटि से मुल्यांकन कार्य में लगे सभी कर्मियों और बोर्ड की प्रतिष्ठा को नुकसान होगा। इसलिए, सभी संबंधित पक्षों की प्रतिष्ठा बनाए रखने के लिए, यह फिर से दोहराया जाता है कि निर्देशों का सावधानीपूर्वक और विवेकपूर्ण तरीके से पालन किया जाए। परीक्षकों को वास्तविक मुल्यांकन शुरू करने से पहले "स्पॉट मुल्यांकन के लिए दिशानिर्देश" में दिए 16 गए दिशानिर्देशों से परिचित होना चाहिए। प्रत्येक परीक्षक यह भी सुनिश्चित करेगा कि सभी उत्तरों का मूल्यांकन किया गया है, अंकों को शीर्षक 17 पृष्ठ पर ले जाया गया है, सही ढंग से योग किया गया है और अंकों और शब्दों में लिखा गया है। उम्मीदवार निर्धारित प्रसंस्करण शुल्क का भुगतान करके अनुरोध पर उत्तर पुस्तिका की फोटोकॉपी प्राप्त करने के हकदार हैं। सभी परीक्षकों/अतिरिक्त प्रधान परीक्षकों/प्रधान परीक्षकों को एक बार फिर याद दिलाया जाता है कि उन्हें यह सुनिश्चित करना होगा कि मूल्यांकन अंकन योजना में दिए गए प्रत्येक उत्तर के लिए मूल्य बिंदुओं के अनुसार सख्ती से किया जाए।

## माध्यमिक विद्यालय परीक्षा, 2025 अंकन योजना

कक्षा: x विज्ञान (विषय कोड-086)

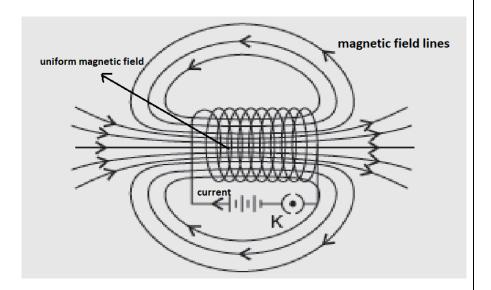
[ पेपर कोड: SET 31/2/3]


## अधिकतम अंक 80

प्र. सं	अपेक्षित उत्तर/मूल्य अंक	अंक	कुल अंक		
	खण्ड क				
1.	(C) /1:8	1	1		
2.	(C)/ 7·0 से 7·8	1	1		
3.	(C) / सोडियम्	1	1		
4.	(C) / पीतल और ब्रान्ज	1	1		
5.	(B) / एलुमिनियम को जब आयरन (III) ऑक्साइड के साथ गर्म किया जाता है, तो गलित आयरन प्राप्त होता है ।	1	1		
6.	(C) / दायाँ अलिन्द शरीर से विऑक्सीजनित रुधिर ग्रहण करके उसे दाएं निलय को भेज देता है ।	1	1		
7.	(C) / कोशिकाओं में जल की मात्रा में परिवर्तन	1	1		
8.	(B) / केशिकाएँ	1	1		
9.	(D)/ वर्तिकाग्र, वर्तिका, अंडाशय,बीजांड	1	1		
10.	(C)/ अंडाशय और वृषण दोनों में	1	1		
11.	(B)/ 110 W	1	1		
12.	(C) / 9 Ω	1	1		
13.	(C) / पक्ष्माभी पेशियाँ	1	1		
14.	(A) $/\frac{10}{9}$	1	1		
15.	(B) / –20 cm	1	1		
16.	(C) / DDT, पालीएस्टर, कांच	1	1		
17.	(D) / अभिकथन (A) गलत हैं, परन्तु (R) सही है ।	1	1		
18.	(A) / अभिकथन (A) और कारण (R) दोनों सही हैं, और कारण (R), अभिकथन (A) की सही व्याख्या करता है ।	1	1		
19.	(C)/ अभिकथन (A) सही हैं, परन्तु (R) कारण गलत है ।	1	1		
20.	(A) / अभिकथन (A) और कारण (R) दोनों सही हैं, और कारण (R), अभिकथन (A) की सही व्याख्या करता है ।	1	1		
	खण्ड ख				
21.	(क)विस्थापन अभिक्रिया	1/2			
	$2AgNO_3 + Cu \longrightarrow 2Ag + Cu(NO_3)_2$	1/2			
	(ख) विद्दयुत अपघटनी परिष्करण	1	2		

22.	साबुन के अणुओं के समूह जिनमें हाइड्रोफोबिक सिरे समूह के अंदर (तेल कण की ओर) होते हैं। इस सरंचना को माइसेल कहा जाता है।	1	
	Na ⁺		
			2
23.	<ul> <li>स्वैच्छिक मांसपेशियों की गति (चलना, लिखना)</li> </ul>		
	• सोचना		
	<ul> <li>सुनना</li> <li>देखना (अथवा कोई अन्य सम्बंधित व्याख्या)</li> </ul>		
	. (,	2	2
24.	(क) (i) बीज की सुरक्षा	1/2	
	(ii) बीज का खाद संग्रह करने वाला भाग/खाद्य संग्रह	1/2	
	(iii) बीज के अंकुरित होने पर जड़ में परिवर्तित होना/ भावी जड़	1/ ₂ 1/ ₂	
	(iv) बीज के अंकुरित होने पर प्ररोह में परिवर्तित होना/ भावी प्ररोह अथवा	, 2	
	(ख) एक परखनली में 10 ग्राम चीनी , 100 मिलीलीटर पानी , एक चुटकी यीस्ट	2	
	ग्रेन्यूल्स लें । इसे 1-2 घंटे के लिए एक गर्म स्थान पर रखें।		2
25.	(क)अवतल लेंस	1	
	F	1	
	अथवा		
	(i)		

	(ii) मुख्य फोकस/फोकस	1	2
26.	<ul> <li>विद्दयुत प्रयूज को विद्दयुत परिपथ में श्रेणीक्रम संयोजन में जोड़ा जाता है।</li> <li>विद्दयुत प्रयूज का उपयोग विद्युत परिपथ को अवांछनीय उच्च विद्दयुत धारा के प्रवाह को समाप्त करके ,संभावित क्षति से बचाना है । यदि परिपथ</li> </ul>	1/2	
	के माध्यम से निर्दिष्ट मान से अधिक विद्दयुत धारा प्रवाहित होती है, तो फ्यूज पिघल जाता है और विद्युत परिपथ को तोड़ देता है।	1½	
	ਅਸਟ ਸ		2
27.	खण्ड ग (क)(i) एकल अभिकारक (पदार्थ) टूटकर दो या अधिक उत्पाद बनाता  है।	1/2	
	• CaCO ₃ (s) — জম্মা CaO(s) + CO ₂ (g)	1/2	
	• $2AgCl(s) \xrightarrow{{}} 2Ag(s) + Cl_2(g)$	1/2	
	• $2H_2O(l) \xrightarrow{\text{विद्दयुत धारा}} 2H_2(g) + O_2(g)$	1/2	
	(कोई और उपयुक्त उदाहरण) (ii) क्योंकि ऊर्जा (ताप) मुक्त होती है।	1	
	अथवा		
	<ul> <li>संयोजन अभिक्रिया में दो या दो से अधिक अभिकारकों से एकल उत्पाद बनता है जबिक वियोजन अभिक्रिया में एकल अभिकारक टूटकर दो या दो से अधिक यौगिक बनाता है। इसलिए, दोनों भिन्न हैं।</li> </ul>	1	
	<ul> <li>संयोजन अभिक्रिया</li> <li>C(s) + O₂ (g)</li></ul>	1	
	• वियोजन अभिक्रिया CaCO₃ (s) ^{ऊष्मा} CaO(s) + CO₂ कैल्सियम कार्बोनेट कैल्सियम ऑक्साइड कार्बन डाईऑक्साइड	1	
	(कोई और उपयुक्त उदाहरण)		
	(यदि भौतिक अवस्था नहीं दी गई है तो अंक न काटें जाएँ )		3
28.	(क) X – क्षारीय Y–अम्लीय		
	↓ ↓ ↓ ↓ pH का परिसर 4 – 6	½×4	
	(ख) 'A' – धातु, क्योंकि यहाँ क्षारीय ऑक्साइड बनाती है	1/2+1/2	3


भाग में उत्पन्न होते हैं और शरीर के कार्य को नियंत्रित करने के लिए लक्षित	<del>.</del>	
अंग या ऊतक की ओर बढ़ते हैं।		
(ख) उदाहरण: यदि रुधिर में शर्करा का स्तर बढ़ जाता है, तो इसे अग्न्याशय की		
कोशिकाओं द्वारा संसूचित किया जाता है और इसकी अनुक्रिया में अधिक		
अधिक इंसुलिन स्नावित करती हैं । जब रुधिर में शर्करा का स्तर कम हो जाता है, इसे अग्र्याशय की कोशिकाओं द्वारा संसूचित किया जाता है और	2	
इंसुलिन का श्रावण कम हो जाता है।		
(कोई और उपयुक्त उदाहरण)		3
30.		
Parents Axillaryflowers Terminal flowers (AA) (aa)		
<b>↓</b>		
Gametes A		
	1	
F ₁ generation (Aa) All axillary flowering plants		
<u>F2 पीढ़ी Aa × Aa</u>		
	1	
AA Aa Axillary Axillary	1	
(a) Aa aa		
Axillary   Terminal		
(b) अनुपात: 3 : 1 (अक्षीय : अन्त्य)	1	3
31. दिया है , f = +1·5 m; u = −6·0 m; h = 3 m	1/2	
$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$	72	
$\frac{1}{v} + \frac{1}{-6} = \frac{1}{1.5}$	1/2	
$\frac{1}{v} = \frac{1}{6} + \frac{1}{1.5}$		
$v = \frac{6}{5} = 1.2 \text{ m}$	1	
$\frac{h'}{h} = \frac{-v}{u}$	1/2	
$\frac{h'}{3} = \frac{1.2}{6}$		
1 12 6		
h' = 0.6  m	1/2	3



(iii)	
•	फ्लेमिंग के वामहस्त (बायाँ हाथ) नियम के अनुसार, अपने बाएँ हाथ की
	तर्जनी, मध्यमा तथा अँगूठे को इस प्रकार फैलाइए किये तीनों एक-दूसरे के
	परस्पर लंबवत हों। यदि तर्जनी चुंबकीय क्षेत्र की दिशा और मध्यमा चालक
	में प्रवाहित विद्युत धारा की दिशा की ओर संकेत करती है तो अँगूठा चालक
	की गति की दिशा अथवा चालक पर आरोपित बल की दिशा की ओर संकेत
	करेगा।

• चुम्बकीय क्षेत्र से बाहर/ऊपर की ओर ।

अथवा (ख) (i) पास पास लिपटे विद्दयुतरोधी ताम्बे के तार की बेलन की आकृति की अनेक फेरों वाली कुंडली को परिनालिका कहते हैं ।



	चित्र अक (i), (ii) and (iii) (ii) किसी चुम्बकीय पदार्थ ,जैसे नर्म लोहे ,को विद्दयुत धारा प्रवाहित परिनालिका के भीतर रख कर ।	1½ ½ ×3	5
35.	(क) (i) X - एथनोइक अम्ल  H - C - C  OH	1/2	
	H OH / CH₃COOH	1	
	(ii) 'X' का pH मान ,खनिज अम्ल की तुलना में अधिक होगा। (iii) एस्टरीकरण अभिक्रिया	1/ ₂ 1/ ₂	
	$CH_3COOH + CH_3CH_2OH \xrightarrow{Acid} CH_3 - COOCH_2CH_3 + H_2O$	1	

1

1

1

(iv)  $2CH_3COOH + Na_2CO_3 \longrightarrow 2CH_3COONa$  $+ CO_2 + H_2O$ सोडियम एसीटेट/सोडियम एथेनोएट 1/2 (X) (समीकरण का संतुलन अनिवार्य नहीं है।) अथवा (ख) (i) संतृप्त हाइड्रोकार्बन असंतृप्त हाइड्रोकार्बन यौगिक जिनमें सभी कार्बन परमाणुओं यौगिक जिनमें किसी कार्बन - कार्बन के बीच एकल सहसंयोजी आबंध होते के बीच द्वि या त्रि सहसंयोजी आबंध हैं। / वे यौगिक जिनका सामान्य सूत्र होते हैं। / वे यौगिक जिनका सामान्य 1 CnH2n+2 होता है। सूत्र C_nH_{2n} and C_nH_{2n-2} होता है। उदाहरण - प्रोपेन उदाहरण – प्रोपीन/प्रोपाइन Η H H Η  $H - \overset{\cdot}{C} - \overset{\cdot}{C} - \overset{\cdot}{C} - H$ H - C = C - C - HH H H प्रोपीन / CH₃CH₂CH₃ Η (कोई अन्य) प्रोपाइन  $H - C \equiv C - C - H$ (कोई अन्य) (ii) • पैलेडियम अथवानिकैलजैसे उत्प्रेरकों की उपस्थितिमें असंतृप् हाइड्रोकार्बन हाइड्रोजन जोड़कर संतृप् हाइड्रोकार्बन देते हैं। /  $\frac{\mathbf{H}}{\mathbf{H}} \mathbf{C} = \mathbf{C} \underbrace{\mathbf{H}}_{\mathbf{H}} \quad \frac{\mathbf{H}_{2}}{\mathbf{N}i/\mathbf{P}d} \quad \mathbf{H} - \underbrace{\mathbf{C}}_{1} - \underbrace{\mathbf{C}}_{1} - \mathbf{H}$ 1 (कोई अन्य) इसका उपयोग वनस्पति तेलों के हाइड्रोजनीकरण में होता है । 1

 $\frac{1}{2}$ 

(iii) बुटीन

	H H H H H H H H H H H H H H H H H H H	1/2	5
36	(क) (i) घास खाने वाले शाकाहारी पशुओं (शाकाहारी) को सेलुलोज पचाने के लिए लंबी क्षुद्रांत्र की आवश्यकता होती है। मांस का पाचन सरल होता है। अतः मांस खाने वाले पशुओं (मांसाहारी) की क्षुद्रांत्र छोटी होती है।	2	
	(ii) अग्न्याशय की भूमिका:- अग्न्याशय अग्न्याशयिक रस का स्नावण करता है जिसमें प्रोटीन के पाचन के लिए ट्रिप्सिन एंजाइम होता है तथा इमल्सीकृत वसा का पाचन करने के लिए लाइपेज एंजाइम होता है।	1	
	पित्तरस की भूमिका – पित्तरस वसा का इमल्सीकरण करता है तथा क्षुद्रांत्र में अग्न्याशयिक एंजाइमों की क्रिया के लिए क्षारीय माध्यम बनाता है ।	1	
	(iii) क्षुद्रांत्र के आतंरिक आस्तर पर अनेक अंगुली जैसे प्रवर्ध होते हैं, जिन्हें दीर्घरोम कहते हैं। ये अवशोषण का सतही क्षेत्रफल बढ़ा देते हैं। दीर्घरोम में रुधिर वाहिकाओं की बहुतायत होती है,जो भोजन को अवशोषित करके शरीर की प्रत्येक कोशिका तक पंहुचाते हैं।	1	
	अथवा (ख) (i) उपास्थि वलय यह सुनिश्चित करता है की वायु मार्ग निपतित न हो । (ii)	1	
	पसिलयाँ ऊपर उठती हैं → डायाफ्राम चपता हो जाता है → वक्षगुहिका बड़ी हो जाती है → वायु फुफ्फुस( कुपिकाओं) के अन्दर चूस ली जाती हैं और हम शवास अन्दर ले लेते हैं।	2	
	(iii) अवायवीय श्वसन (हमारी मांसपेशियों में ऑक्सीजन का अभाव) में, पायरुवेट लैक्टिक अम्ल में परिवर्तित हो जाता है । मांसपेशियों में लैक्टिक अम्ल का संचय क्रैम्प का कारण बनता है।	2	5
	खण्ड ਤਂ		
37.	(क)अंडवाहिका(फेलोपियन ट्यूब) (ख)गर्भाशय की आतंरिक पर्त मोटी हो जाती है तथा भ्रूण के पोषण हेतु रुधिर प्रवाह भी बढ़ जाता है ।	1	
	(ग) (i) गर्भाशय की पर्त धीरे धीरे टूट कर योनी मार्ग से अनिषेचित अंडकोशिका के साथ रुधिर एवं म्यूकस के रूप में निष्कासित होती है ।	2	
	अथवा (ii) विशेष ऊतक की सहायता से ,जिसे प्लेसेंटा कहा जाता है और जो गर्भाशय की भित्ति में धंसी होती है, । यह माँ से भ्रूण को ऑक्सीजन, भोजन का स्थानांतरण करता है।	2	4
38.	(क) प्रकाश का विक्षेपण (ख) प्रकाश के विभिन्न वर्ण प्रिज्म के माध्यम से गुजरते समय आपतित किरण के सापेक्ष विभिन्न कोणों पर मुड़ते हैं। (ग) (i) दो सर्व सम पिज़्मों को एक-दसरे के सापेक्ष उल्ली स्थिति में रखकर। जब	1	
1	THE THE GO THE PROBLEM FOR FOR THE HEALTH PROBLEM ON	1	'



(यदि नामांकित किरण दिया गया है, तो पूरेअंक दीजिए) अथवा  (यदि तीर चिह्नित नहीं हैं तो ½ अंक काट लीजिए)  39. (क) P – pH 0 से 4 के बीच में Q – pH 12 से 14 के बीच में (ख) (i) सीडियम हाइड्रोक्साइड को मिलाने पर (अथवा कोई अन्य क्षार) (ii) हाइड्रोक्लोरिक अम्ल को मिलाने पर (अथवा कोई अन्य खनिज या प्रबल अम्ल)		बाहर से एक स्वेत प्रकाश का किरण पुंज निर्गत होता है ।	2	
(ii)  (यदि तीर चिह्नित नहीं हैं तो ½ अंक काट लीजिए)  (यदि तीर चिह्नित नहीं हैं तो ½ अंक काट लीजिए)  39. (क) P – pH 0 से 4 के बीच में Q – pH 12 से 14 के बीच में (ख) (i) सोडियम हाइड्रोक्साइड को मिलाने पर (अथवा कोई अन्य क्षार) (ii) हाइड्रोक्लोरिक अम्ल को मिलाने पर (अथवा कोई अन्य खनिज या प्रबल अम्ल)		श्वेत प्रकाश $R$		
39. (क) P – pH 0 से 4 के बीच में Q – pH 12 से 14 के बीच में (ख) (i) सोडियम हाइड्रोक्साइड को मिलाने पर (अथवा कोई अन्य क्षार) (ii) हाइड्रोक्लोरिक अम्ल को मिलाने पर (अथवा कोई अन्य खनिज या प्रबल अम्ल)		(ii) वर्षा की बूँद सूर्य का प्रकाश	2	
(ख) (i) सोडियम हाइड्रोक्साइड को मिलाने पर (अथवा कोई अन्य क्षार) ½ (ii) हाइड्रोक्लोरिक अम्ल को मिलाने पर (अथवा कोई अन्य खनिज या ½ प्रबल अम्ल)	39.			4
		(ख) (i) सोडियम हाइड्रोक्साइड को मिलाने पर (अथवा कोई अन्य क्षार) (ii) हाइड्रोक्लोरिक अम्ल को मिलाने पर (अथवा कोई अन्य खनिज या	1/2	
(i) • हाइड्रोनियम आयन (H3O+/H+) की सांद्रता बढ़ जायेगी । • पीला/ओरेंज रंग लाल/गुलाबी रंग में बदल जाएगा । अथवा		• पीला/ओरेंज रंग लाल/गुलाबी रंग में बदल जाएगा ।	_	
(ii) • कम pH/ 1 और 3 के बीच में • एंटासिड/मिल्क ऑफ़ मैग्नीशिया/सोडियम हाइड्रोजनकार्बोनेट के उपयोग ½		(ii) • कम pH/ 1 और 3 के बीच में • एंटासिड/मिल्क ऑफ़ मैग्नीशिया/सोडियम हाइड्रोजनकार्बोनेट के उपयोग		
द्वारा • मैग्नीशियम हाइड्रोक्साइड /Mg(OH)2 4			1/2	4

